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Abstract: Understanding the transitions among affective states during computer-based 

learning may guide the design of affect-responsive learning environments. Current 

studies have focused on the marginal strength of an affect transition, which is the average 

transition tendency over possible affective states preceding the transition. However, 

marginal strength ignores the potential influence of the preceding state on the transition. 

In contrast, a conditional strength, which is the transition tendency given a particular state 

preceding the transition, accounts for this influence and may contribute to a more 

comprehensive understanding of students’ learning processes. This paper presents a 

methodological framework that utilizes the logistic mixed model to compute the 

conditional strengths of affect transitions and examines whether conditional and marginal 

strengths are comparable. In three real-world datasets, we found that the conditional and 

marginal strengths of a transition were not identical in most cases. Prediction analysis 

indicated that accounting for the state preceding the transitions resulted in better affect 

prediction performance. In addition, empirical data analyses showed that the framework 

had higher power in detecting the impact of students’ factors on affect and affect 

transitions. The framework also enables researchers to specify the reference transition 

when computing a transition strength and handle self-transitions, a critical issue in affect 

transitions. Empirical data analyses showed that the strength of a transition varied 

substantially when the reference transition changed, highlighting the careful selection of 

reference transitions in transition analyses.  

 

Keywords: affect transition, emotion in computer-based learning, modeling human 

emotion, logistic mixed model   
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1 Introduction 

The role of affect in learning has been widely recognized (Buhr et al., 2019; Chevrier et 

al., 2019; Theobald et al., 2021). Affect dynamics refers to how affective states change 

over time (Kuppens, 2015), and related work in computer-based learning focuses on the 

transition tendency between learners’ affective states (Botelho et al., 2018; D’Mello & 

Graesser, 2012; Karumbaiah et al., 2021). For instance, when students are confused 

during learning, will they transition to frustration or engagement? Understanding such 

tendencies during learning guides the design of affect-responsive learning environments 

that provide timely scaffolding to learners who likely persist in vicious cycles of negative 

emotions (D’Mello et al., 2007).  

Previous studies have focused on the marginal strength of affect transitions 

(Botelho et al., 2018; Caglar-Ozhan et al., 2022; D’Mello & Graesser, 2012; Karumbaiah 

et al., 2021; Ocumpaugh et al., 2017; Rodrigo et al., 2012), which is th average transition 

tendency over all possible affective states before the transition. For example, given four 

educationally important affective states—engagement, confusion, frustration, and 

boredom—we may be interested in the transition confusion → frustration. The average 

transition probability over the four possible states before confusion is a marginal strength, 

which does not consider the possible influence of the states before confusion on the 

transition. In contrast, a conditional strength, which is the transition probability given 

particular states before confusion, accounts for this influence.  

The marginal strengths assume that, in a learning process, the type of the next 

affective state only relies on the current state, i.e., the affective process during learning is 

a first-order Markov chain (Bakeman & Gottman, 1997). Such an assumption may hold, 
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but it has not been validated by prior studies. If the assumption does not hold and 

marginal strengths differs from conditional strengths (Agresti, 2013), ignoring 

conditional strengths may result in an inaccurate understanding of affect dynamics that 

may contradict theories. Accounting for the conditional strengths may also guide the 

development of more accurate and adaptive affect-responsive learning environments. 

However, the conditional strengths in affect transitions are underexplored. 

This paper presents a framework that uses mixed-logistic models to compute both 

the marginal and conditional strengths of affect transitions and examine whether they are 

equal. In addition, the proposed approach can account for the impact of external factors 

(e.g., prior knowledge) on affect and affect transitions, which has been emphasized by 

prior studies (Karumbaiah et al., 2021; Morais & Jaques, 2024). It also enables 

researchers to specify the reference transition, the strength of which is the benchmark 

when computing the strengths of transitions of interest. This flexibility allows the 

removal of self-transitions, which refers to identical successive affective states and is a 

critical issue in prior affect transition studies (Karumbaiah et al., 2019; Matayoshi & 

Karumbaiah, 2020). We applied the method to three affect datasets collected during 

learning in computer-based environments, which involved different domains and learners 

at different ages. The results showed that conditional strengths of an affect transition 

could be heterogeneous and different from the marginal strength of the transition, which 

supports our call for analyzing conditional strengths of affect transitions for a more 

comprehensive understanding of the affective process during learning.   
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2 Literature review 

2.1 Computing transition strength 

This section introduces metric-based and model-based methods for quantifying the 

strength of affect transitions (and transitions of events in other modalities). It ends with a 

discussion on conditional and marginal strengths. 

2.1.1 Metric-based methods 

Generally, any association indicator for two binary variables or a 2×2 contingency table 

can quantify the transition strength (Bosch & Paquette, 2021). Assume that we want to 

compute the strength for transition A → B in an affect sequence S containing N+1 states. 

Table 1 helps us understand the similarities and differences among these metrics. The 

rows of Table 1 represent whether the first affective state is A in a pair of consecutive 

states in S, and the columns represent whether the second state is B. Let a, b, c, and d 

denote the occurrences of A → B, 𝐴 → 𝐵 (indicating not B), 𝐴 → 𝐵, and 𝐴 → 𝐵. The sum 

of a, b, c, and d is N because there are N+1 pairs of consecutive states in S (assuming that 

S is an unbroken sequence). Taking confusion → engagement in sequence {frustration, 

boredom, confusion, engagement, confusion, confusion, engagement, engagement} as an 

example, 𝑎, 𝑏, 𝑐, and 𝑑 are 2, 1, 1, and 3, respectively. 

The most often used metrics in affect dynamics during learning are L (D’Mello et 

al., 2007) and L* (Matayoshi & Karumbaiah, 2020). The difference between them is that 

L* is more accurate than L when consecutive identical affective states are code as a single 

state. This coding strategy is used when researchers are not interested in self-transitions 

(e.g., confusion → confusion). The coding removes self-transitions and prevents the 
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suppression of self-transitions on the other transitions (Matayoshi & Karumbaiah, 2020). 

Appendix A1 describes the computational details for these and the other metrics. 

Table 1 

The Occurrences of Pairs of Consecutive Events 

 

2.1.1.1 The impact of short sequence and event imbalance. The values of transition 

metrics derived from observed data are estimates of true values (Dagne et al., 2002). The 

observed values have measurement errors, which rely on sequence length and event 

balance (Bosch & Paquette, 2021; Dagne et al., 2002). Thus, when sequences are short 

and contain imbalanced event types, transition metrics are less accurate as indicators of 

event associations (Bosch & Paquette, 2021; Matayoshi & Karumbaiah, 2021). However, 

current studies tend to ignore measurement errors when examining the statistical 

significance of affect transitions. For example, Botelho et al. (2018) computed L per 

affect transition per learner. The t-test was conducted to examine the significance of each 

transition without considering the measurement errors of L. One way of controlling the 

measurement errors is creating a weight variable based on the measurement errors and 

using a weighted test. Alternatively, we may utilize regression models to address the 

inaccuracy issues (Dagne et al., 2002; Matayoshi & Karumbaiah, 2021), discussed in the 

next section. 

First event \ Second event B 𝐵 

𝐴 𝑎 𝑏 

𝐴 c d 
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2.1.2 Model-based methods 

Researchers have applied generalized linear mixed models (GLMM) to overcome the 

inaccuracy of transition metrics (Dagne et al., 2003, 2007; Howe et al., 2005; 

Ozechowski et al., 2007). The GLMM approach accounts for the measurement error 

when estimating a transition strength. Both logistic and log-linear mixed models have 

been used (Dagne et al., 2007; Howe et al., 2005; Ozechowski et al., 2007). The non-

mixed version of these models can also quantify the transition strength. However, the 

non-mixed version requires pooling all sequences into a single sequence and cannot 

account for the nested property of the data (e.g., affect observations are nested within 

sequences or learners). Pooling data may cause misleading estimates (Wickens, 1993). 

Thus, the non-mixed version is not discussed.  

Matayoshi and Karumbaiah (2021) applied a generalized estimating equation 

(GEE) to model the marginal strengths of affective transition. GEE also accounts for the 

measurement error and nested property between affect observations and sequences. The 

rationale for modeling transition strength is the same between the GEE approach and the 

logistic mixed model, but the GEE approach does not estimate the variation of transition 

strengths across individuals (i.e., the random effect). Although this variation itself may 

not be appealing, affect dynamics researchers have shown interest in how this individual 

difference is related to environmental and learners’ characteristics (Andres et al., 2019; 

Rodrigo et al., 2012). Therefore, this paper does not discuss the GEE approach in detail. 

 

2.1.2.1 Logistic mixed model. Let A → B denotes a transition of interest and assume there 

are M sequences. Let 𝑆𝑚 = {𝑒1, 𝑒2, … , 𝑒𝑛𝑚
} denotes sequence m, where 𝑛𝑚 is the number 
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of affective states in sequence m and varies across learners. Let 𝑋𝑚𝑗 denotes whether A is 

the first state in the jth pair of consecutive states in 𝑆𝑚. If the first event is A, 𝑋𝑚𝑗 = 1; 

otherwise 𝑋𝑚𝑗 = 0. For instance, for confusion → engagement in 𝑆𝑚 =

{𝑓𝑟𝑢𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛, 𝑏𝑜𝑟𝑒𝑑𝑜𝑚, 𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛, 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡}, 𝑋𝑚1 and 𝑋𝑚2 = 0 but 𝑋𝑚3 = 1. 

Let 𝑝(𝐵|𝑋𝑚𝑗) denotes the probability that the second event is B conditional on 𝑋𝑚𝑗. This 

probability can be modeled by the logistic mixed model (Ozechowski et al., 2007), as 

shown in Equation (1).  

Level 1: pair of events 

𝑙𝑛
𝑝(𝐵|𝑋𝑚𝑗)

1 − 𝑝(𝐵|𝑋𝑚𝑗)
= 𝛽0𝑚 + 𝛽1𝑚𝑋𝑚𝑗 

Level 2: sequence 

𝛽0𝑚 = 𝛾00 + 𝑈0𝑚 

 𝛽1𝑚 = 𝛾01 .         (1) 

The term 𝛾00 is the fixed effect of intercept and represents the expected log odds 

of the second state being B, given that 𝑈0𝑚 = 0 and 𝑋𝑚𝑗=0 (i.e., the first state is A). The 

term 𝑈0𝑚 is the random effect of the intercept and represents the random variation of this 

log odds across learners. The term 𝛾01 is the fixed effect of the slope and represents the 

difference in the log odds between the conditions that the second state is B when the first 

state is A versus A̅. If 𝛾01 > 0, A → B more likely occurs than 𝐴̅ → B. That is, B is more 

likely to occur after A than A̅. In contrast, if 𝛾01 < 0, B is less likely to occur after A than 

A̅. If 𝛾01= 0, B is independent of whether the first state is A. 

The logistic mixed model can only estimate transitions with the same target state 

at a time. Thus, it is suitable when we are interested in specific transitions and have a 

priori assumption. 
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2.1.2.2 Log-linear mixed model. We need to convert each sequence into a K × K 

contingency table to apply the log-linear mixed model for estimating the transition 

strengths, where K is the number of affect categories. For instance, sequence {frustration, 

boredom, confusion, engagement, confusion, confusion, engagement, engagement} can be 

converted into Table 2. The row indicates the category of the first state in a pair of 

consecutive states, and the column indicates the category of the second state. Cell values 

are the occurrences of corresponding transitions, i.e., the occurrences of transitions from 

the row state to the column state. The strengths of all transitions between the row and 

column states can be estimated within a single log-linear mixed model (see Appendix A2 

for details). Thus, for an exploratory analysis with the goal of finding any significant 

transitions, the log-linear mixed models are a better option. 

Table 2 

Contingency Table for the Example Sequence {frustration, boredom, confusion, 

engagement, confusion, confusion, engagement, engagement} 

Note. Cell values are the occurrences of transitions from the row state to the column state. 

  

Frequencies (𝜇𝑚𝑟𝑐) frustration boredom confusion engagement 

frustration 0 1 0 0 

boredom 0 0 1 0 

confusion 0 0 1 2 

engagement 0 0 1 1 
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2.1.3 Conditional and marginal strengths of a transition 

This section illustrates the conditional and marginal strengths of a transition, how they 

may differ, and under what conditions they are equal. Assume that we are interested in 

confusion → engagement. All states before the transition may influence the strength, but 

how many states before the transition are considered does not influence the definitions of 

marginal and conditional strengths. Moreover, from a computational perspective, 

accounting for too many states before the transition requires a much larger dataset, which 

is difficult to collect in the real world. Thus, to avoid unnecessary complexity in 

distinguishing the marginal and conditional strengths, this paper focuses on the first state 

before the transition. We discuss how to investigate the impact of earlier states in the first 

paragraph of section 5.2. 

The transition strength derived from the first two rows of Table 3 is a conditional 

strength because this value is under the condition that the first affective state is 

engagement. This is the same for the transition strength derived from the second two 

rows. The derived strength is marginal if we do not consider the first affective state, i.e., 

computing the transition based on the last two rows. 

In contingency table analyses, a table composed of the first or second two rows is 

a partial table, while a table consisting of the last two rows is a two-way marginal table 

(Agresti, 2013). The first affective state is a confounding variable that needs to be 

controlled because it may influence the association between the second and third 

affective states. For instance, when the first state is engagement, the transition metric L 

for confusion → engagement is 1, and when the first state is confusion, L is 0.342. 

However, when aggregating over the first states, L for confusion → engagement becomes 
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-0.689. This phenomenon is known as the Simpson’s paradox (Agresti, 2013). Cornfield 

et al. (1954; as cited in Greenhouse, 2009) demonstrated that the Simpson’s paradox 

occurs when the confounding variable (the first affective state) is strongly related to the 

variables of interest (the second and third affective states). It is unknown whether there 

are strong associations in one dataset, and it may be better to examine this question rather 

than ignore it.  

Table 3  

Artificial Data for the Transition Confusion → Engagement 

 

Moreover, the conditional and marginal strengths of a transition may still differ, 

even though all conditional strengths of this transition are identical (i.e., homogeneous 

associations). The conditional and marginal associations between the two variables of 

interest are the same only under the collapsibility condition (Agresti, 2013), where two 

assumptions must hold: 

1) Homogeneous assumption: The conditional associations between the two 

variables of interest are the same. This requirement is named homogeneous 

First state Second state 
Third state 

Total 
Engagement  Not engagement 

Engagement Confusion 10 0 10 

Not confusion 199 10 209 

Confusion Confusion 29 20 49 

Not confusion 1 30 31 

Total Confusion 39 20 59 

 Not confusion 200 40 240 
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associations. However, affect transition research has not examined this 

assumption.  

2) Independence assumption: The confounding variable is conditionally 

independent of one of the variables of interest. For example, in Table 3, this 

assumption entails that: 2.1) given the third affective state, the second affective 

state is independent of the first affective state; or 2.2) given the second affective 

state, the third affective state is independent of the first affective state. Figure 1 

illustrates the two assumptions. Assumption 2.1 does not make sense because the 

third affective state occurs after the first and second states. A future affective state 

cannot impact past affective states. Assumption 2.2 seems reasonable, but it 

assumes that no association at lag two, i.e., no association between the first and 

third affective states.  

 

Thus, the assumptions of the collapsibility condition may not hold in the transition 

analysis of educational data. We should not ignore the conditional strengths when 

investigating affect transitions. 

Figure 1 

The First Affective State is Conditionally Independent of the Second or Third State 
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2.2 Affect transitions in computer-based learning 

Affect dynamics research in computer-based learning focuses on the transition between 

affective states (Botelho et al., 2018; D’Mello & Graesser, 2012; Karumbaiah et al., 

2021). The most cited theory in this direction is D’Mello and Graesser’s model (2012), a 

state transition network that covers four educationally important emotions (Figure 2): 

engagement/flow, confusion, frustration, and boredom.  

Figure 2  

D’Mello and Graesser’s (2012) Theoretical Model of Affect Dynamics 

This model emphasizes the role of cognitive disequilibrium in the affect 

trajectory. Cognitive disequilibrium arises when there is an impasse, which is a conflict 

between new information and a learner’s current knowledge structure (Mandler, 1990). 

Confusion is the affective sign of cognitive disequilibrium. A learner processes and 

assimilates encountered information when they are engaging in a task. If their knowledge 

structure cannot assimilate the new information, i.e., an impasse occurs, the learner 

transitions to a confused state. If the learner solves the impasse, they transition back to 

flow. By contrast, if the learner cannot resolve the impasse, the prolonged confusion 
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transitions to frustration. Additional impasses induce the transition from frustration to 

confusion. Persistent frustration causes disengagement (boredom). Boredom may 

transition back to frustration if the learner must endure the task.  

Despite high citations, empirical studies have only partially supported this model 

(Karumbaiah et al., 2021). For example, in Botelho et al. (2018), there was no significant 

transition from engagement to confusion and from frustration to confusion. The 

researchers explained that the reason might be there were not enough occurrences of 

confusion. However, other transitions also did not follow the theoretical model. The 

transitions from confusion to frustration and from frustration to boredom occurred at a 

rate lower than chance, meaning that these transitions were unlikely to happen. There 

were also significant transitions not predicted by the model, such as engagement to 

boredom and frustration to engagement. Karumbaiah et al. (2021) reanalyzed twelve 

datasets used by prior studies with transition metric L* and aggregated the results from 

individual datasets to overcome the issue of small sample sizes. Nevertheless, the only 

significant transition in line with D’Mello and Graesser’s model was engagement → 

confusion. The researchers aggregated the results across datasets from the same country 

and compared the results between countries (the United States versus the Philippines). In 

the data from the United States, there were significant engagement → confusion, 

engagement → frustration, confusion → engagement, and boredom → engagement. In 

contrast, there was no significant transition in the data from the Philippines. The 

researchers concluded that culture might be critical in affect dynamics. 

In addition to the four emotions in the theoretical model, researchers have 

investigated the transitions among other emotions during digital learning. For instance, 
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Ocumpaugh et al. (2017) found that, in vMedic, a computer-based environment teaching 

combat medicine protocols, the transition from surprise to anxiety was less likely than 

chance, while the transition from anxiety to surprise was at a chance rate. Caglar-Ozhan 

et al. (2022) examined teachers’ affect transitions in a simulated virtual classroom 

platform. The analysis indicated that eight transitions occurred at a rate more than 

chance, including four transitions between different affective states (e.g., fear → disgust) 

and four self-transitions (e.g., happiness → happiness).  

In summary, the conditional and marginal strengths of affect transitions may not 

be identical, and investigating the conditional strength contributes to a more 

comprehensive understanding of affective process during learning. However, prior 

studies have mainly investigated the marginal strength of affect transition during 

learning. There is also no methodological framework on how to compute the conditional 

strength of a transition and examine whether it is equal to its marginal strength. In 

addition, model-based approaches can better handle short sequence and event imbalance, 

but how to tackle self-transitions with the approaches is unclear. Moreover, studies have 

emphasized the impact of external factors on affect transitions (Karumbaiah et al., 2021; 

Morais & Jaques, 2024), but it is not clear whether we could address this topic with the 

model-based approaches.  

3 A framework for computing transition strengths  

This section proposes a framework to compute the conditional strengths of affect 

transitions, examine whether it is equal to the marginal strength, and analyze the impact 

of external factors on affect transitions. Affect datasets in education are often collected 
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from multiple students, and researchers are mainly interested in the transition strength 

across students. If we use transition metrics to quantify transition strengths, we need to 

compute the metric for each student’s sequence and aggregate these metric values over 

students to determine the association strength and significance. The observed value of a 

transition metric has measurement errors, so it is not recommended to compute these 

metrics in each sequence and average them over sequences (Dagne et al., 2007; 

Matayoshi & Karumbaiah, 2021). Thus, our framework uses GLMM to analyze the 

strengths of transitions. 

It is useful to discuss the data preprocessing for affect transition analyses briefly. 

Prior studies have included self-transitions when the focus is the persistence of individual 

affective states but removed self-transitions if focusing on transitions between different 

affective states, which may be suppressed by self-transitions (Karumbaiah et al., 2018, 

2019, 2021). However, with GLMM, the suppression effect of self-transitions can be 

controlled without excluding self-transitions. Section 3.1 elaborates on this point. 

Moreover, including self-transitions increases data points and makes GLMM produce 

more accurate estimates. Thus, self-transitions were not removed.  

Below, we introduce the following topics sequentially: computing the marginal 

transition strength, computing the conditional transition strength, examining the 

assumption of identical marginal and conditional strengths, and investigating the impact 

of external factors on transitions. 

3.1 Computing marginal strengths of affect transitions  

The framework starts by examining the marginal strengths of affect transitions for two 

reasons. First, GLMM has not been applied to the field of affect transitions in prior work. 
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The marginal strengths of affect transitions in GLMM enables researchers to check to 

what extent the results based on GLMM match prior findings, where L and L* have been 

mainly used to quantify the transition strengths. Second, a GLMM for modeling the 

marginal strength of a transition is much simpler than that for conditional strengths. 

Starting with a simpler model allows for easier diagnosis in cases of any estimation issue. 

Both mixed logistic and log-linear models have been used for transition analyses, 

although not in the field of affect dynamics (Dagne et al., 2007; Ozechowski et al., 2007). 

Estimating the conditional strengths of affect transitions entails converting a student’s 

affect sequence to a three-way contingency table. With the log-linear approach, the data 

size of a study may not be sufficient for analyzing the conditional strength. For example, 

estimating the conditional strengths of transitions among engagement, confusion, 

frustration, and boredom requires converting an affect sequence into a 4×4×4 table 

containing 64 cells. However, the average length of affect sequences is typically in the 

tens (e.g., Karumbaiah et al., 2021). Such a length means that the counts in a large 

proportion of cells would be smaller than five and even be zero. In addition, affective 

states typically follow a largely imbalanced distribution, and states like boredom and 

frustration may rarely occur in a sequence with tens of affective observations. 

Consequently, marginal zeros, which refer to the total counts in a row or column being 

zero, are likely to appear in the contingency table. Fitting a log-linear model to such 

sparse contingency tables with marginal zeros would encounter such issues as 

convergence failures and inaccurate estimates (Fienberg, 1979; Wickens, 1989). By 

contrast, a mixed logistic model suffers less from these issues. With the mixed logistic 

model, we convert an affect sequence to a 4×4×2 table (see Table 4), which contains half 
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the number of cells compared to a mixed log-linear model. In addition, marginal zeros 

impact weakly the parameter estimation for a mixed logistic model. Thus, the framework 

adopts the logistic approach.  

In Table 4, the first, second, and third affective states refer to the state in the 

corresponding position of a three-affect subsequence. Thus, the cell value represents the 

occurrences of a subsequence of three affective states. For instance, the subsequence 

consisting of three engagement observations occurred seven times, which is the cell value 

in the first row and first column. Our framework focuses on whether the transition 

strength between the second and third states is conditional on the first state. Thus, for 

clarity, the remainder of this paper named the first state as the conditional state, the 

second state as the given state, and the third state as target state. 

Table 4 

An Example of the Contingency Table for Analyzing Transitions with Engagement as the 

Target Affective State  

𝝁𝒎𝒄𝒈𝒚 Third/target state (y) 

First/conditional state (c) 
Second/given state 

(g) 

Engagement 

(y = 1) 

Others 

(y = 0) 

Engagement Engagement 7 14 

Confusion 4 3 

Frustration 4 1 

Boredom 3 1 

Confusion Engagement 2 2 

Confusion 2 1 

Frustration 6 0 

Boredom 1 0 
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Frustration Engagement 2 4 

Confusion 5 1 

Frustration 10 5 

Boredom 1 1 

Boredom Engagement 1 1 

Confusion 1 0 

Frustration 4 0 

Boredom 3 0 

 

Table 4 is constructed for analyzing transitions where the target affective state is 

engagement. Similar tables can be used for analyzing transitions to other target affective 

states. The remainder of this section uses transitions to engagement as an example to 

illustrate the modeling procedure. We use Equation (2) to estimate the marginal strengths 

of transitions between given and target affective states. 𝜇𝑚•𝑔1 is the sum of the 

corresponding cell values in student m’s table, i.e., the sum of cell values where the given 

affective state is g and the target affective state is engagement, regardless of the 

conditional affective state. By contrast, 𝜇𝑚•𝑔0 is the sum of cells where the given 

affective state is g but the target affective state is not engagement. The intercept 𝛽00𝑚 

equals ln (𝜇𝑚•01/𝜇𝑚•00), where 𝜇𝑚•01 is the sum of cells where the given affective state 

is the reference state and the target affective state is engagement. We explain the 

reference state below. The terms γ00 and 𝑈0𝑚 are the fixed and random effects of 

intercept, respectively.  

Level 1: cell 

𝑙𝑛
𝜇𝑚•𝑔1

𝜇𝑚•𝑔0
= 𝛽00𝑚 + ∑ 𝛽𝑚•𝑔𝑋𝑚•𝑔

𝐺

𝑔=1
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Level 2: student 

𝛽00𝑚 = 𝛾00 + 𝑈00𝑚 

 𝛽𝑚•𝑔 = 𝛾•𝑔 .            (2)  

The term 𝑋m•g is the dummy variable for the given affective state. The dummy 

coding determines the reference state and should be based on research purposes and 

context. For instance, when the target affective state is engagement, the dummy coding in 

Table 5 can be used to examine D’Mello and Graesser’s model (2012) and control the 

influence of self-transitions. First, based on this model, only confusion is likely to 

transition into engagement. Thus, 𝑋m•2 is used to indicate whether the given affective 

state is confusion, and 𝛾•2 models the strength of confusion → engagement (we will 

explain this point in the next paragraph). Second, self-transitions may suppress the 

transitions between different affective states (Karumbaiah et al., 2021). If using all 

affective states other than confusion as the reference, the strength of confusion → 

engagement may be underestimated. Thus, we use 𝑋m•1 to indicate whether the given 

affective state is engagement and control the self-transition of engagement. The affective 

states not indicated by 𝑋m•1 and 𝑋m•2, including frustration and boredom, are the 

reference given states. G in Equation (2) is the number of non-reference given states. For 

the dummy coding in Table 5, G equals two because non-reference given states include 

confusion and engagement. For an exploratory study without theoretical guidance, all 

states except for the first state in the transition can be the reference state. We will return 

to this point in section 5.1.1. 
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Table 5 

Dummy Coding for the Given Affective State When the Target Affective State Is 

Engagement 

 

By putting 𝛽00𝑚 = ln(𝜇𝑚•01/𝜇𝑚•00) into level 1 of Equation (2) and shifting 

items, we get 𝛾•2 = ln (𝜇𝑚•21 ∗ 𝜇𝑚•00/(𝜇𝑚•20 ∗ 𝜇𝑚•01)), which is a log-odds ratio. Thus, 

𝛾•2 represented the natural log of the ratio of the odds for confusion → engagement to the 

odds for the transition from the reference states (frustration and boredom) to engagement. 

That is, the transition from frustration and boredom to engagement is the reference.  

3.2 Computing conditional strengths of affect transitions  

The conditional affective state and its interactions with the given affective state are added 

to Equation (2) to analyze conditional transitions. The model becomes Equation (3). 

 

Level 1: cell 

𝑙𝑛
𝜇𝑚𝑐𝑔1

𝜇𝑚𝑐𝑔0
= 𝛽00𝑚 + ∑ 𝛽𝑚𝑐•𝑋𝑚𝑐•

𝐶

𝑐=1
+ ∑ 𝛽𝑚•𝑔𝑋𝑚•𝑔

𝐺

𝑔=1
+ ∑ ∑ 𝛽𝑚𝑐𝑔𝑋𝑚𝑐•𝑋𝑚•𝑔

𝐶

𝑐=1

𝐺

𝑔=1
 

= 𝛽00𝑚 + ∑ 𝛽𝑚𝑐•𝑋𝑚𝑐•

𝐶

𝑐=1
+ ∑ (𝛽𝑚•𝑔 + ∑ 𝛽𝑚𝑐𝑔𝑋𝑚𝑐•

𝐶

𝑐=1
)

𝐺

𝑔=1
𝑋𝑚•𝑔 

Level 2: student 

𝛽00𝑚 = 𝛾00 + 𝑈00𝑚 

𝛽𝑚𝑐• = 𝛾𝑐• 

Dummy 

variable 𝑿𝒎•𝒈 

Given affective state 
 

Engagement Confusion Frustration Boredom 

𝑋𝑚•1 1 0 0 0 

𝑋𝑚•2 0 1 0 0 
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𝛽𝑚•𝑔 = 𝛾•𝑔 

  𝛽𝑚𝑐𝑔 = 𝛾𝑐𝑔 .             (3) 

Taking Table 4 as an example, 𝜇𝑚𝑐𝑔1 and 𝜇𝑚𝑐𝑔0 are the counts when the target 

affective state is engagement and not, respectively, in the case that the conditional 

affective state is c, and the given affective state is g. The term 𝑋𝑚𝑐• is the dummy 

variable for the conditional affective state, and Table 6 displays the dummy coding. 

Because the association between conditional and target affective states is not the focus of 

our framework, we use boredom as the reference conditional state.  

Table 6 

Dummy Coding for the Conditional Affective State 

 

The term 𝛽𝑚𝑐𝑔 represents the interaction effect between the conditional and given 

affective states. The term 𝛾•𝑔 is the transition strength from the given affective state g to 

engagement when the conditional affective state is boredom, while 𝛾𝑐𝑔 represents the 

strength difference of this transition when the conditional affective state is c versus 

boredom. For example, 𝛾•2 represents the transition strength from confusion to 

engagement when the conditional affective state is boredom because 𝑋m•2 is the dummy 

variable indicating whether the given affective state is confusion (see Table 5). By 

contrast, 𝛾12 represents the difference in the transition strength when the conditional 

Dummy variable 

𝑿𝒎𝒄• 

Conditional affective state 

Engagement Confusion Frustration Boredom 

𝑋𝑚1• 1 0 0 0 

𝑋𝑚2• 0 1 0 0 

𝑋𝑚3• 0 0 1 0 
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affective state is engagement versus boredom because Xm1• represents whether the 

conditional affective state is engagement. That is, when the conditional affective state is 

engagement, the transition strength from confusion to engagement is 𝛾•2 + 𝛾12. 

3.3 Examining the assumption of identical conditional and marginal affect 

transitions 

Recall that the conditional and marginal strengths of a transition are equal only if the 

following assumptions hold: 

1) The homogeneous transition assumption entails that the transition strength 

from the given affective state to the target affective state does not change by the 

conditional affective states. In Model (3), this assumption can be represented as 

𝛾𝑐𝑔 = 0. To examine whether the assumption holds in this study, we can analyze 

the data with a simpler version of Model (3), where all 𝛾𝑐𝑔 are set to zero, i.e., 

removing variable 𝑋𝑚𝑐•. Since the two models are nested, a likelihood ratio test 

(LRT) can inform whether the simpler model fits the data as well as Model (3).  

In addition, GLMM researchers recommend information criteria as a 

complementary approach to the LRT for model comparisons, such as the Akaike 

information criterion (AIC) and Bayesian information criterion (BIC) (Bolker et 

al., 2009). Unlike the LRT, which focuses on estimating p-values, the difference 

in information criterion between two models quantifies the extent that the 

assumption does not hold. The smaller the difference in information criterion, the 

more evidence the simpler model fits the data as well as Model (3). If the LRT 

generates a p-value lower than the researcher-specified significance level (e.g., 
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0.05), and the difference in information criterion is small, we may conclude the 

first assumption holds. An intuitive explanation for this assumption is that the 

conditional state does not moderate the effect of given state on the target state 

 

2) The target affective state is independent of the conditional affective state when 

the given affective state is controlled. In Model (3), the assumptions can be 

represented as 𝛾𝑐𝑔 = 0 and 𝛾𝑐• = 0, respectively. If the homogeneous association 

assumption holds, and we want to test the second assumption, we can compare a 

version of Model (3) without variable 𝑋𝑚𝑐• and a version of Model (3) without 

variables 𝑋𝑚𝑐• and 𝑋𝑚𝑐•. Again, the LRT and information criteria can be used to 

examine whether the second assumption holds. An intuitive explanation for this 

assumption is no need to use the conditional state as a covariate in the transition 

analysis because it does not influence the target state.  

 

If both assumptions hold, we may safely ignore conditional transitions. Otherwise, 

conditional transitions should be reported together with the marginal transition.  

3.4 Investigating the impact of external factors 

To examine whether the transition strength is related to an external factor Z (e.g., whether 

learners with different prior domain knowledge show differences in the strength of 

confusion → engagement), we can add the factor into equations (2) and (3) by letting 

𝛽00𝑚 = 𝛾00 + 𝛾01𝑍𝑚 + 𝑈00𝑚 and 𝛽𝑚•𝑔 = 𝛾•𝑔 + 𝛾11𝑍𝑚. 𝛾01 represents the main effect of 

Z on the target state, i.e., the extent that Z influences the probability of target state. 𝛾11 
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represents the moderation effect of Z on the transition strength, i.e., the extent that the 

transition strength relies on Z. 

4 Empirical examples 

This section applies our framework to three datasets used by prior affect dynamics 

research to illustrate the application of the framework. Specifically, we examined four 

research questions: (1) Whether conditional and marginal strengths are equal in real 

datasets? (2) Does a model with both conditional and given states have better prediction 

performance on target states than a model with only given states? (3) Is prior knowledge 

related to transition strengths? (4) How does the reference transitions influence the 

strength estimate of transitions of interest? 

4.1 Datasets 

The datasets were from three computer-based learning environments, Physics 

Playground, vMedic, and Betty’s Brain1. We used these datasets based on the availability 

and the considerations of sequence lengths and observation intervals. Long sequences 

ensure more accurate strength estimates. With small observation intervals, the probability 

that a student’s affect transitioned twice between two successive observations was low. 

For example, given that two consecutive observations were confusion and frustration, it 

was unlikely that the student also experienced boredom between confusion and 

 
1 To access to these datasets, readers may contact Ma. Mercedes Rodrigo for the Physics 

Playground dataset, Ryan S. Baker for the vMedic dataset, and Gautam Biswas for the Betty’s 

Brain dataset. 
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frustration because the interval between confusion and frustration was too small to allow 

two transitions (i.e., confusion → boredom and boredom → frustration).  

All datasets were collected using the Baker-Rodrigo-Ocumpaugh Monitoring 

Protocol (BROMP; Ocumpaugh, Baker, & Rodrigo, 2015). BROMP was developed for 

quantitative field observations of affect and on-task behaviors. The tool was implemented 

in the Android App HART (Ocumpaugh, Baker, & Rodrigo et al., 2015), which added a 

timestamp to each observation. While students were learning, certified observers 

recorded both students’ affect and behaviors (not the focus of the current study).  

The Physics Playground dataset was collected from 120 eighth-grade students in 

two cities and 60 tenth-grade students in a third city in the Philippines (Andres et al., 

2015). Physics Playground is a game designed to teach middle school students about 

qualitative physics. The students played a computer game for 30 to 90 minutes in 

classrooms. Each student was observed on average once every 32 seconds (SD = 15.48) 

and 155 times (SD = 56), resulting in 27,918 observations in total. 

The vMedic dataset was from 119 West Point cadets in USA (Ocumpaugh et al.; 

2017). vMedic is a simulation system that provided training in combat medicine and 

battlefield doctrine around medical first response. The cadets used vMedic for up to 25 

minutes. Each was observed on average once every 99 seconds (SD = 66.89) and 20 

times (SD = 14.93), resulting in 2,643 observations in total. 

The Betty’s Brain dataset was from 93 sixth-grade students in an urban public 

school in Tennessee, USA (Munshi et al., 2018). Betty’s Brain is an open-ended 

environment that teaches scientific phenomena . The students used the system for 160 to 
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200 minutes over four days. Each was observed on average once every 258 seconds (SD 

= 141.06) and 54 times (SD = 43.73), resulting in 5,177 observations in total. 

4.2 Data preprocessing  

The marginal strengths of affect transitions in Physics Playground and vMedic datasets 

have been investigated by Karumbaiah et al. (2021) and Matayoshi and Karumbaiah 

(2021). These studies analyzed all possible transitions among engagement, confusion, 

frustration, and boredom. Unlike these studies, the current analysis focused on the six 

transitions in D’Mello and Graesser’s model (2012). Correspondingly, we removed 

transitions involving affective states not in D’Mello and Graesser’s model (2012), except 

for the vMedic dataset. We did not remove the other states in the vMedic dataset because 

these states accounted for 1,061 observations, and removing these observations would 

decrease the number of transitions from 2336 to 1275, resulting in less accurate estimates 

of transition strengths. Thus, we included the other states and coded these states as others 

in the analysis of vMedic data.  

In the Physics Playground and vMedic datasets, we removed transitions involving 

observations with an interval longer than 3 minutes to mitigate the probability that more 

than one transition happened within the interval. In the Betty’s Brain dataset, we used 4 

minutes as the threshold because using 3 minutes would result in so few observations that 

the model for transitions to confusion did not converge and yielded extremely large 

standard errors for all estimates. Then, we counted each learner’s valid transitions and 

only kept those with no less than 10 transitions to ensure relatively reliable estimates of 

transition strengths. Table 7 displays the characteristics of each dataset after the above 

preprocessing.   
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Table 7 

The dataset characteristics after preprocessing 

4.3 Analysis 

To examine the assumption of identical marginal and conditional strengths, which 

contains two sub-assumptions: homogeneous and independence assumptions, we fitted 

three models for each target state: (1) with only given state, (2) with both given and 

conditional states, and (3) with interactions between given and conditional states. We 

compared model 2 and 3 to examine the homogeneous assumption based on LRT and 

information criteria. If model 3 fit the data better than model 2, the assumption is 

rejected. Otherwise, we continued to compare model 2 and 1. If model 2 fit the data 

better than model 1, the independence assumption is rejected. 

The Betty’s Brain dataset contained domain knowledge test scores, which was 

collected before students used Betty’s Brain. We used the scores as an indicator of prior 

knowledge and added it to the logistic-mixed models to illustrate the analysis of the 

impact of external factors on transitions. As a comparison, we also computed the linear 

correlation between the scores and the transition strengths measured by L*, a commonly 

Dataset 
Seque

nces 

Transitio

ns per 

sequence 

Proportion in the dataset 

Engagement Confusion Frustration Boredom 

Physics 

Playground 
180 112.03 80% 8% 7% 5% 

vMedic 75 24.51 51% 9% 2% 7% 

Betty’s 

Brain 
76 20.97 83% 6% 5% 5% 
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used transition metric. Such method has been frequently used to investigate the impact of 

environmental and learner characteristics on transitions (Andres et al., 2019; Morais & 

Jaques, 2024). 

To compute the model performance in predicting affective states, we used 10-fold 

cross-validations at the student level, where the model was fitted to 90% of students and 

used for prediction on the remaining 10% of students. Only the fixed effects were used 

for prediction, and thus, the model became a logistic model. We used four performance 

metrics: the accuracy, AUC, the F1 score, and Cohen’s kappa. We compared the models 

with only given states and with both given and conditional states to illustrate the 

importance of accounting for conditional states. 

All the models were implemented via the glmer() function of the lme4 library 

(version 1.1-27.1; Bates et al., 2015) in R1. The Nelder-Mead method was used for 

parameter optimization. Approximate t-tests with the residual degrees of freedom were 

used for inferences on the fixed effects. The cross-validation and the performance metrics 

were implemented via the caret library in R. An R script for the analysis and a runnable 

example dataset are available in GitHub2. 

 
1 Some models with interactions between conditional and given affective states failed to 

converge under the default convergence criterion (0.002). Further inspection showed that 

the maximum likelihood estimation was close to the Bayesian estimation (obtained via 

the brms library, version 2.17.0; Bürkner, 2017), with differences around 0.01. Thus, the 

maximum likelihood estimation of these models was reported to be consistent with the 

other models.  
2 https://github.com/yingbinz/mixed_model_transition/tree/main 
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4.4 Comparing conditional and marginal affect transitions 

4.4.1 The assumption of identical conditional and marginal affect transitions 

In four of the 12 cases (four sets of models with different target states × three datasets; 

see Table 8), the homogeneous transition assumption was rejected based on the 

combination of LRT and information criteria (see Tables B2.2, B2.4, B3.1, and B3.2). 

The results mean that, in these cases, the conditional state moderated the transition 

strengths between given and target states. For instance, in the Physics Playground dataset, 

the coefficient of given state engagement on target state confusion (i.e., engagement → 

confusion) was 0.36 when the conditional state was engagement and 0.83 when not (see 

Tables B2.2). This implies that, for this sample and learning environment, when students 

were in successive engaged states, they were less likely to transition into a confused state. 

By contrast, when they just engaged, they were more likely to transition into a confused 

state. 

Among the eight cases where the homogeneous assumption was not rejected, the 

independence assumption was examined and rejected in five cases based on the 

combination of LRT and information criteria. This meant that, although the conditional 

state did not moderate the transition strengths between given and target states, it 

influenced target states and was a covariate that should be controlled when estimating the 

transition strengths. Otherwise, its effect on the target states may be incorrectly attributed 

to the given states, resulting in inaccurate estimates of the transition strengths. For 

example, in the Betty’s Brain dataset, the coefficients of conditional states engagement 

and confusion on target state engagement were statistically significant (γ = 1.17 & 1.07, 

SE = 0.28 & 0.38, p < 0.01). When the model did not contain these conditional states, the 
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coefficient of given state confusion on target state engagement (i.e., the marginal strength 

of confusion → engagement) was statistically significant (γ = 0.60, SE = 0.30, p = 0.04). 

Adding the conditional decreased the coefficient of given state confusion and made it 

insignificant (i.e., the conditional strength; γ = 0.49, SE = 0.29, p = 0.11). Similar 

differences in the transition strengths between controlling conditional states and not 

controlling them existed in the other cases where the independence assumption was 

rejected, although the conditional strengths were still significant in some of these cases.  

Table 8 

The homogeneous transition and independence assumptions in the datasets  

Note. √: not rejected. ×: rejected. 

Target state Dataset 
Homogeneous 

transition assumption  

Independence 

assumption 

Engagement Physics playground √ × 

 vMedic × / 

 Betty’s Brain √ × 

Confusion Physics playground × / 

 vMedic × / 

 Betty’s Brain √ √ 

Frustration Physics playground √ × 

 vMedic √ √ 

 Betty’s Brain √ × 

Boredom Physics playground × / 

 vMedic √ × 

 Betty’s Brain √ √ 
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4.4.2 Prediction performance with and without conditional affective states 

The prediction performance between the models with and without conditional affective 

states were almost identical in accuracy and F1 (see Appendix B5). Adding conditional 

states improved AUC with a magnitude ranging from 3% ~ 11% in 10 cases and slightly 

decreased AUC by 1% and 3% in two cases (see Figure 3). Note that AUC evaluates 

prediction performance across all thresholds of the predicted probabilities, while 

accuracy and F1 are based on a fixed threshold (0.5). Thus, the increase in AUC and no 

increase in accuracy and F1 suggest that adding conditional states resulted more reliable 

predicted probabilities, but such improvement was not sufficient to change the overall 

number of correct predictions at the fixed threshold. 

When the target state was engagement, the model with given state predicted all 

samples as engagement in the Physics playground and Betty’s Brain datasets, and thus, 

kappa was zero. Adding conditional states to the model changed the invariant prediction 

and improved kappa by 0.09 and 0.15. When the target state was confusion, frustration, 

or boredom, kappa was zero, regardless of adding conditional states.  

 

In summary, the assumption of identical conditional and marginal strengths of 

affect transitions did not hold in nine of the 12 cases. Accounting for the conditional 

strengths of transitions improved the affect prediction in some cases. 
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Figure 3  

The prediction performance in AUC  

 

4.5 The impact of external factors on affect transitions 

We selected the models fitting the Betty’s Brain data best in Table 8 as the base 

model and added prior knowledge to these models to investigate the impact of prior 

knowledge on affect transitions. Tables 9 and 10 display the results when the target state 

was engagement, confusion, frustration, and boredom, respectively. Since the best-fitting 

models in Table 8 varied by the target state, the models in Tables 9 and 10 for different 

target states contained different variables. Prior knowledge had a positive main effect on 

engagement and a negative effect on frustration and boredom. This is in line with 

expectation because students with more prior knowledge were less likely to encounter 

impasses during learning that could not be solved, and thus, they experienced less 

frustration and boredom.  

As for the impact of prior knowledge on transitions, it moderated the effect of 

given state confusion on engagement (confusion → engagement; see Table 9) and the 
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effect of given state confusion on frustration (frustration → confusion; Table 10). The 

moderation on frustration → confusion was negative. This moderation effect could be 

explained by D’Mello and Graesser’s model (2012), which claims impasses during 

frustration induce the transition from frustration to confusion. Students with more prior 

knowledge were less likely to encounter impasses, and thus, they were less likely to 

transition to confusion during frustration than those with lower prior knowledge. The 

moderation on confusion → engagement was negative. This means that, when students 

were confused, those with higher knowledge were less likely to transition to engagement. 

This is unexpected as students with higher knowledge are expected to resolve confusion 

and become engaged. 

Table 9 

The impact of prior knowledge on engagement and confusion 

Note. The reference given state was boredom and frustration when the target state was 

engagement, and was boredom when the target state was confusion. g-: given state. c-: 

Target-engagement Estimate (SE) Target-confusion Estimate (SE) 

Fixed effect    

 Intercept −0.24 (0.31)  Intercept −3.44 (0.74) 
*** 

c-Engaged 1.12 (0.27) 
*** g-Engaged 0.28 (0.75) 

c-Confusion 1.06 (0.38) 
** g-Confusion 1.40 (0.82) 

c-Frustration 0.39 (0.37) g-Frustration 0.67 (0.94) 

g-Engaged 1.22 (0.20) 
*** Knowledge 0.19 (0.10) 

g-Confusion 0.39 (0.30) g-Engaged*Knowledge −0.16 (0.11) 

Knowledge 0.11 (0.03) 
** g-Frustration*Knowledge −0.58 (0.22) ** 

g-Confusion*Knowledge −0.25 (0.09) 
**   

Random effect    

Intercept 0.42 Intercept 0.74 
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conditional state. The units of coefficients were the natural log of odds between cell 

counts, and values in the parentheses were standard errors. Prior knowledge was mean-

centered.  

For the linear correlation between prior knowledge and transition strengths 

measured by L*, prior knowledge was only related to the L* of frustration → confusion 

(r = -0.27, p = 0.02) but not to any other transitions, including confusion → engagement 

(r = 0.02, p = 0.85). The negative correlation between prior knowledge and the L* of 

frustration → confusion was in line with the negative moderation effect yielded by the 

proposed mixed-logistic model. 

Table 10 

The impact of prior knowledge on frustration and boredom 

Note. The reference given states were boredom. 

Target-frustration Estimate (SE) Target-boredom Estimate (SE) 

Fixed effect  Fixed effect  

 Intercept −3.38 (0.17) 
***  Intercept −4.50 (0.44) 

*** 

c-Frustration 1.48 (0.34) 
*** g-Frustration 0.98 (0.63) 

g-Confusion 0.56 (0.43) g-Boredom 0.97 (0.33) 
** 

g-Frustration 1.04 (0.38) 
** Knowledge −0.28 (0.12) 

* 

g-Boredom 1.22 (0.52) 
* g-Frustration* Knowledge −0.20 (0.26) 

knowledge −0.14 (0.05) 
**   

g-Confusion*Knowledge 0.16 (0.14)   

g-Boredom*Knowledge 0.06 (0.22)   

Random effect    

Intercept 0.37 Intercept 1.53 
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4.6 The influence of reference states 

Table 11 presents the marginal strengths of the transitions with different reference 

transitions. When all the other transitions were references, only five of the 18 cases (six 

transitions × three datasets) were statistically significantly positive, and four transitions 

were statistically significantly negative. Removing self-transitions resulted in positively 

stronger transition strengths. The four negative transitions became null or positive, and 

six null transitions became significantly positive. This was in line with prior studies 

(Karumbaiah et al., 2019), which have suggested that self-transitions may suppress the 

strengths of transitions of interest. 

The change between the model without self-transitions and the model with only 

one reference transition was inconsistent between the vMedic dataset and the others. In 

the Physics playground and Betty’s Brain datasets, the changes in the strength 

coefficients were positive, with a magnitude ranging from 0.01 to 1.09. While in the 

vMedic dataset, the changes in the strength coefficients were negative, with a magnitude 

ranging from -0.01 to -1.03 and three positive transitions became null. The inconsistency 

was perhaps because the analyses for the vMedic dataset included the unknown affective 

state, which were observations that were not or could not be classified into the four states 

(engagement, confusion, frustration, and boredom). The transition from the given 

unknown state to the target state were statistically significantly negative (see Table B3.1), 

and including them in the reference weakened the overall strength of the reference 

transitions and inflated the strengths of transitions of interest. For example, the strength 

of unknown → engagement was -1.59 (SE = 0.20, p < 0.001). When including unknown 

→ engagement in the reference, the strength of confusion → engagement was 0.97 (SE = 
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0.19, p < 0.001). In contrast, when excluding unknown → engagement in the reference,  

the strength of confusion → engagement became 0.09 (SE = 0.24, p = 0.70). 

Table 11 

Transition strength estimates varied by reference transitions 

γ (SE) Dataset 

Reference transitions 

All others No self-transition One reference a 

ENG_CON Physics playground -0.69 (0.06) 
*** 0.10 (0.09) 0.69 (0.17) 

*** 

 vMedic 0.29 (0.18) 0.96 (0.23) 
*** 0.03 (0.34) 

 Betty’s Brain −0.87 (0.25) 
*** −0.59 (0.34) 0.50 (0.74) 

CON_ENG Physics playground -0.74 (0.06) 
*** 0.55 (0.07) 

*** 0.93 (0.09) 
*** 

 vMedic −0.10 (0.18) 0.97 (0.19) 
*** −0.09 (0.24) 

 Betty’s Brain −0.53 (0.25) 
* 0.60 (0.30) 

* 0.61 (0.35) 

CON_FRU Physics playground 0.18 (0.10) 0.50 (0.10) 
*** 0.55 (0.10) 

*** 

 vMedic 1.63 (0.46) 
*** 1.65 (0.46) 

*** 1.30 (0.47) 
** 

 Betty’s Brain 0.25 (0.43) 0.41 (0.43) 0.54 (0.43) 

FRU_CON Physics playground 0.00 (0.10) 0.27 (0.11) 
* 0.91 (0.19) 

*** 

 vMedic 1.04 (0.55) 1.18 (0.53) 
* 0.84 (0.61) 

 Betty’s Brain 0.92 (0.38) 
* 1.08 (0.38) 

** 1.56 (0.81) 

FRU_BOR Physics playground 0.33 (0.12) 
** 1.15 (0.12) 

*** 1.16 (0.12) 
*** 

 vMedic −0.16 (0.77) 0.07 (0.75) 0.06 (0.75) 

 Betty’s Brain 1.20 (0.45) 
** 1.37 (0.44) 

** 1.36 (0.45) 
** 

BOR_FRU Physics playground -0.00 (0.13) 0.35 (0.13) 
** 0.43 (0.13) 

*** 

 vMedic 0.36 (0.63) 0.37 (0.63) 0.24 (0.66) 

 Betty’s Brain 1.31 (0.39) 
*** 1.41 (0.38) 

*** 1.46 (0.38) 
*** 

Note. ENG: engagement. CON: confusion. FRU: frustration. BOR: boredom. *, **, *** p 

< .05, .01, .001.a: When the target state is engagement, confusion, frustration, and 
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boredom, the reference transition is boredom → engagement, boredom → confusion, 

engagement → frustration, and engagement → boredom, respectively.  

5 Discussion 

This study proposes a framework that utilizes the logistic mixed model to compute the 

conditional strengths of affect transitions, examine whether marginal and conditional 

strengths are equal, and investigate the impact of external factor on transitions. We 

applied the framework to three affect sequence datasets and found: (1) marginal and 

conditional strengths were not equal in 9 of 12 cases; (2) accounting for conditional 

strengths improved the performance of predicting affective states; (3) prior knowledge 

negatively moderated the strengths of confusion → engagement and frustration → 

confusion; (4) the affective state used as the reference level substantially influenced the 

transition strength estimates. This section discusses the implications of the findings for 

affect dynamics and transition analyses of events in other modalities, highlights the 

limitations of this study, and suggests future directions. 

5.1 Implications for affect dynamics  

5.1.1 Methodological implications for affect dynamics and transition analyses of events 

in other modalities 

The finding that the marginal and conditional strengths of affect transitions were not 

equal in most cases suggests that the next affective state (target states) depends on both 

the current (given states) and previous states (conditional states) during the learning 

process (i.e., a higher-order Markov chain; Bakeman & Gottman, 1997). In addition, the 
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previous states may moderate the transition strength between the current and next states. 

The role of the previous state is similar to a covariate that may influence the next state 

and the relationship between the current and next states. Without controlling the previous 

state, the marginal strength would be a mix of the effects of previous and current states on 

the next state, rather than the pure effect of the current state on the next state. 

Consequently, the marginal strength estimates derived from a dataset may greatly rely on 

the affect state distribution in this dataset. For example, in the Physics Playground 

dataset, the conditional strength of engagement → confusion was 0.36 when the 

conditional state was engagement (i.e., engagement → engagement → confusion) and 

0.83 when not (i.e., not engagement → engagement → confusion). If most observations 

were engagement in the dataset, the marginal strength would be close to 0.36. In contrast, 

if most observations were not engagement, the marginal strength would be close to 0.83. 

The proportion of engagement in the dataset was 80%, and thus, the marginal strength 

was 0.69, much closer to 0.83 rather than 0.36. Therefore, it is recommended to control 

the conditional state whenever possible, or at least, check the assumption of identical 

conditional and marginal transition strengths.    

The empirical analysis for the impact of prior knowledge on transition strengths in 

the Betty’s Brain dataset suggests that model-based transition analysis approaches, such 

as the proposed framework, may have a higher power in detecting the impact of students’ 

and environmental factors on affect transitions than metric-based approaches. This is 

likely due to that the model-based approaches account for measurement errors in 

transition strengths. Prior studies have called for investigating the impact of students’ and 

environmental factors on affect and affect transitions (Andres et al., 2019; Karumbaiah et 
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al., 2021; Morais & Jaques, 2024). Future research may use the model-based approaches 

to do so. 

When estimating the transition of interest, the choice of which transition to be the 

reference significantly impacts the estimate. Prior studies have found that including self-

transitions in the references deflated the estimate (Karumbaiah et al., 2018; Karumbaiah 

et al., 2021; Matayoshi & Karumbaiah, 2021). The findings in this study further 

suggested that including the other transitions in the reference may inflate or deflate the 

estimate, depending on the strength of these transitions. For example, the changes in the 

estimate between the model without self-transitions and the model with only one 

reference transition were positive in the Physics Playground and Betty’s Brain datasets 

because positive transitions were excluded from the reference, while the changes was 

negative in the vMedic dataset because negative transitions were excluded from the 

reference. These results imply that researchers must carefully operationalize the 

significance or strength of an affect transition based on the context and research purpose.  

For selecting the reference transitions, we recommend excluding self-transitions if 

they are not of interest. This is because they are typically strong and positive, and thus, 

including them in the reference may deflate the strength estimates of positive transitions 

and inflate the strength estimates of negative transitions. If there is a theoretical model 

that hypothesizes which transitions likely happen, using the other transitions as reference 

would be a reasonable choice. With such reference setting, researchers can examine 

whether the transitions hypothesized by the theory are more likely to happen than the 

others. If the analysis is exploratory, researchers may estimate one transition each time 

with all others as the reference. This reference setting allows identifying the strongest 
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transitions. Regardless of the reference setting, the key point is to clearly indicate what it 

is and articulate the reasons. 

The above implications are applied to the transition analysis of learning events in 

other modalities, such as action logs or discourses during learning. For example, lag-

sequential analysis (LSA) has been widely used in identifying the transitions between 

coded discourses in collaborative learning. LSA is based on log-linear model but can only 

model marginal strengths between events. It does not allow users to incorporate the 

students and environmental factors into the model directly. As such, the proposed 

framework is a promising alternative to LSA in the transition analysis of discourses.  

5.1.2 Practical implications 

The difference between conditional and marginal transition strengths has practical 

implications for designing adaptive scaffolding. For example, resolved confusion benefits 

learning, but unresolved confusion may harm learning (D’Mello et al., 2014). If a learner 

is not likely to resolve their confusion and become engaged, providing scaffolding for 

confusion resolution will benefit the learner. In the vMedic dataset, the marginal strength 

of confusion → engagement was not statistically significant, and the conditional strength 

was the same when the conditional state was not others. But when the conditional state 

was others, the conditional strength was statistically significant. Based on the information 

of the marginal strength, we may infer that learners have difficulty in resolving their 

confusion in this environment and provide scaffolding when they are confused. However, 

based on the information of conditional strength, we also know that learners may resolve 

confusion when the state before confusion was others. As such, the system may not need 

to provide scaffolding when the state before confusion was others, given that unnecessary 
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scaffolding may annoy the learner and result in the expertise reversal effect (Kalyuga, 

2007).  

Moreover, the effects of conditional state on the target state and the transition 

strength between given and target states, as well as the improvement in affect prediction 

performance by accounting for conditional strengths, imply that affect prediction and 

detectors are likely more accurate when incorporating more historical states. Note that 

this study only considered the conditional and given states for simplicity and due to the 

sequence length requirement of the mixed logistic model. It does not mean that states 

earlier than the conditional state are not useful for prediction. What minimal historical 

states are sufficient for accurate prediction is beyond the scope of this study, but the main 

point is that, when developing an affect prediction or detection model in computer-based 

learning environments, it may be useful to incorporate historical states into the model.  

5.2 Limitations and future directions 

The current study considered only the impact of the previous affective state on the next 

state and the transition from the current state to the next state, which implied a second-

order Markov chain. A higher-order Markov chain model, which considers the impact of 

earlier affective states, is possible. However, such investigation entails a dataset with long 

affect sequences that may be difficult to collect. For example, to include the previous two 

affective states before the current affective state in the analysis, we need to convert a 

sequence to a 4×4×4×2 table containing 128 cells. Wickens (1989) noted that the total 

counts of a table should be at least four times the number of cells to ensure relatively 

accurate estimation. This requirement on the sample size of individual tables may be 

lowered for GLMM because it leverages information across individual tables to compute 
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the strength estimates of transitions (Dagne et al., 2007). However, we may not expect 

100 affect observations per sequence to guarantee accurate strength estimates of the 

transition from the current state to the next state when considering the impact of the 

previous two states. Even though two counts in a cell may allow relatively accurate 

estimation, a sequence still needs to contain 256 affect observations. Collecting so many 

affect observations is challenging via human observation (Matayoshi & Karumbaiah, 

2021). For instance, the typical observation window for affective states is 20 seconds in 

the literature (Andres et al., 2019; Rodrigo et al., 2012). Collecting an affect sequence of 

256 observations take 1.42 hours. The requirement on the number of sequences is easier 

to meet, e.g., 50 sequences, but collecting 50 sequences would still take 71.11 hours of 

observation. Moreover, even with such an amount of time on data collection, the data size 

would only allow for investigating how the previous two affective states influence the 

transition from the current to the next affective states.  

There are two directions to address the limitation of GLMM in analyzing the 

impact of earlier affective states. One is using deep learning-based event sequence 

models to capture the long-term dependency between affective states. For example, 

transformer-based event sequence models can effectively learn the dependency between 

two states with many other states between them, where the dependency is indicated by 

the attention weights (Zhang et al., 2020; Zuo et al., 2020). Although such approach may 

not require many observations per sequence, it may require many sequences to return 

reliable dependencies between affective states. Also, attention weights are less 

interpretable than the coefficients in the mixed logistic model (Bai et al., 2021; Bibal et 

al., 2022).  
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Another direction is taking advantage of machine learning and multimodal data 

analytics to collect a large amount of affect data with fine granularity (Calvo & D’Mello, 

2010). For instance, both sensor-based data (e.g., posture and eye movement) and sensor-

free data (e.g., action log) can be useful in affect detection (Henderson et al., 2020; Sims 

& Conati, 2020). Deep learning models, such as convolutional neural network, long-

short-term memory, and their combination, is promising in affect detection (Wang et al., 

2022). Nevertheless, there are two caveats when using affect datasets collected by 

machine learning tools. First, if an observation only lasts a few seconds, many successive 

observations would be the same affective state. In this case, self-transitions must be 

controlled. Otherwise, the other transitions would be null or negative. Second, the 

accuracy of machine learning tools influences the analysis. Taking confusion → 

engagement as an example. If the precision on detecting engagement is low, many 

observed instances of confusion → engagement would be confusion → engagement
__________________________

. 

Consequently, the strength estimate confusion → engagement may be inflated or 

deflated, depending on the relative strength of confusion → engagement to confusion → 

engagement
__________________________

. 

There is variability in the transition strengths across datasets. For instance, the 

assumption of identical marginal and conditional strengths was rejected in models for any 

target state in the Physics Playground dataset and but not rejected in models for confusion 

and boredom. These datasets differed in many characteristics, such as cultures, the 

learning platform, learners’ ages, time intervals between observations, and sequence 

lengths. It is hard to say what dataset characteristics caused the variability, and it requires 

datasets with fewer differences to explore this question. 
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5.3 Conclusion 

This paper presents a methodological framework for analyzing affective transitions in 

computer-based learning. By considering both the marginal and conditional strengths of 

affect transitions, we unveiled a more nuanced understanding of how emotions unfold 

during learning processes. The findings challenge the assumption that the affective 

process is a first-order Markov chain because the strengths of some affect transitions 

were dependent on preceding affective states, implying a higher-order Markov chain. By 

enhancing the accuracy of estimating affect transitions, the proposed framework may 

allow the realization of more precise affect interventions and support the design of affect-

responsive learning environments. In addition, the empirical data analyses suggests that 

the framework is promising in detecting the impact of students’ and environmental 

factors on transitions. Our research also highlights the significance of selecting reference 

transitions in transition analyses.  
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Appendix A :  Transition metrics and mixed log-linear models 

A1. Transition metrics 

Assume that we want to compute the strength for transition A → B in an affect 

sequence S containing N+1 states. Let a, b, c, and d denote the occurrences of A 

→ B, 𝐴 → 𝐵 (indicating not B), 𝐴 → 𝐵, and 𝐴 → 𝐵 (Table A1). The simplest 

and most intuitive transition metric may be the transition probability (TP) used 

in the Markov chain model (Bakeman & Dabbs, 1976), which is 𝑇𝑃(𝐴 → 𝐵) =

𝑎/(𝑎 + 𝑏). The metric TP(𝐴 → 𝐵) considers the occurrence rate of A but does 

not consider that of B, and thus, TP(𝐴 → 𝐵) is heavily influenced by the 

occurrence rate of B. Its interpretation is difficult because the same value has 

quite different meanings when the occurrence rate of 𝐵 differs greatly 

(Bakeman & Gottman, 1997).  

Table A1 

The Occurrences of Pairs of Consecutive Events 

 

Other metrics control both occurrence rates of A and B, such as the log-

odds ratio (Bakeman et al., 1996), L (D’Mello et al., 2007), and L* (Matayoshi 

& Karumbaiah, 2020). The odds ratio of A → B is calculated as. :  

First event \ Second event B 𝐵 

𝐴 𝑎 𝑏 

𝐴 c d 



2 

2 

 

 
𝐿𝑂𝑅(𝐴 → 𝐵) = 𝑙𝑛

𝑎𝑑

𝑏𝑐
 . (A4) 

LOR(A→B) represents the natural log of the ratio of the odds of B after 

A to that of B after 𝐴. If LOR(A→B) > 0, B is more likely to occur after A than 

𝐴; if LOR(A→B) < 0, B is less likely to occur after A than 𝐴; if LOR(A→B) = 0, 

there is no relation between A and B. For instance, in the beforementioned affect 

sequence, 𝐿𝑂𝑅(𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 → 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡) is ln(2 ∗ 3/(1 ∗ 1)) = ln(6), 

which means that the odds of engagement after confusion are six times the odds 

of engagement after the other affective states.  

The metric L quantifies the transition strength of A → B differently from 

the log-odds ratio, as shown in Equation (A5) (D’Mello et al., 2007). It controls 

the occurrence rate of B (i.e., (𝑎 + 𝑐)/(𝑎 + 𝑏 + 𝑐 + 𝑑)) by subtracting it from 

TP(A→B) and scales the difference so that the maximum value is one. If 

L(A→B) = 0, no relationship exists between A and B. If L(A→B) > 0, B occurs 

after A at a rate more than chance; if L(A→B) < 0, it means that B occurs after A 

at a rate lower than chance. 

 

𝐿(𝐴 → 𝐵) =

𝑎
𝑎 + 𝑏

−
𝑎 + 𝑐

𝑎 + 𝑏 + 𝑐 + 𝑑

1 −
𝑎 + 𝑐

𝑎 + 𝑏 + 𝑐 + 𝑑

. (A5) 

The two affective states of a transition may be the same, e.g., confusion 

→ confusion. Such transitions are named self-transitions (Matayoshi & 

Karumbaiah, 2020). Researchers may not be interested in self-transitions and 

thus combine consecutive identical affective states into a single state. For 

instance, consecutive observations of confusion may be recoded as a single 
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observation of confusion. In this case, B can only be a state different from A, 

and TP(A→B) does not necessarily equal the occurrence rate of B when B is 

independent of A. Consequently, L becomes biased. Another metric, L*, 

mitigates the bias by deriving a, b, c, and d only from pairs of consecutive states 

where the second state is not A (Matayoshi & Karumbaiah, 2020). With the new 

counts, the computation of L* follows Equation (A5). 

A2. Mixed log-linear model 

Recall that cell values in Table A2 are the occurrences of transitions from the 

row state to the column state.  

Table A2 

Contingency Table for the Example Sequence {frustration, boredom, confusion, 

engagement, confusion, confusion, engagement, engagement} 

Note. Cell values are the occurrences of transitions from the row state to the 

column state. 

 

The following two-level model can fit the cell values :   

Level 1 :  cell 

Frequencies 

(𝝁𝒎𝒓𝒄) 

fr

ustration 

bo

redom 

co

nfusion 

enga

gement 

frustration 0 1 0 0 

boredom 0 0 1 0 

confusion 0 0 1 2 

engagement 0 0 1 1 
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𝑙𝑛𝜇𝑚𝑟𝑐 =  𝛽0𝑚 + 𝛽𝑟𝑚𝑋𝑚𝑟• + 𝛽𝑐𝑚𝑋𝑚•𝑐 + 𝛽𝑟𝑐𝑚𝑋𝑚𝑟𝑐 

Level 2 :  learner 

𝛽0𝑚 = 𝛾00 + 𝑈0𝑚 

𝛽𝑟𝑚 = 𝛾𝑟0              

𝛽𝑐𝑚 = 𝛾𝑐0              

 𝛽𝑟𝑐𝑚 = 𝛾𝑟𝑐0 . (A6) 

The term 𝜇𝑚𝑟𝑐 is the cell value in the rth row and cth column of the mth 

contingency table. The terms 𝑋𝑚𝑟• and 𝑋𝑚•𝑐 are dummy variables for the rth 

row state and the cth column state, respectively, while γ𝑟0 and γ𝑐0 are their fixed 

effects. The term X𝑚𝑟𝑐 are dummy variables for interactions between rows and 

columns, and γ𝑟𝑐0 represents its fixed effect, i.e., the average association 

between the rth row and the cth column states. If γ𝑟𝑐0 is significantly different 

from 0, there is an association between the rth row and the cth column states. γ00 

is the fixed effect of the intercept, while 𝑈0𝑚 is the random effect of the 

intercept. 

Taking Table A2Table 2 as an example, r = 1, 2, 3, 4, and c = 1, 2, 3, 4. 

If we let the engagement row and the engagement column be the references, 

𝑋𝑚4• will always be 0 if the cell is in row engagement, and 𝑋𝑚•4 will always be 

0 if the cell is in column engagement. The term 𝑋𝑚1• = 1 if row frustration 

otherwise 0, and 𝑋𝑚•1  = 1 if column frustration otherwise 0. The term 𝑋𝑚11  = 

1 if row frustration and column frustration. If 𝛾110 is significantly different from 

0, it means that a student in a frustrated state stays at this state at a rate more 

than transitioning into engagement. Other coding techniques, such as contrast 
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coding, can also be used to investigate specific questions, such as whether 

students in a confused state are more likely to resolve confusion and transition 

into engagement than transition into frustration and boredom. Readers may refer 

to Dagne et al. (2007) for details.   
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Appendix B :  Marginal and conditional transition strengths 

B1. Dummy Coding of the Given Affective State  

Table B1.  

Dummy Coding of the Given State at Different Target States 

Note. In the analysis of the vMedic dataset, the reference given state did not 

include the state others, regardless of the target state. 

Dumm

y variable 

𝑿𝒎•𝒈 

Given affective state 

Eng

agement 

Con

fusion 

Frus

tration 

Bor

edom 

Target affective state is engagement 

𝑋𝑚•1 1 0 0 0 

𝑋𝑚•2 0 1 0 0 

Target affective state is confusion 

𝑋𝑚•1 1 0 0 0 

𝑋𝑚•2 0 1 0 0 

𝑋𝑚•3 0 0 1 0 

Target affective state is frustration 

𝑋𝑚•1 0 1 0 0 

𝑋𝑚•2 0 0 1 0 

𝑋𝑚•3 0 0 0 1 

Target affective state is boredom 

𝑋𝑚•1 0 0 1 0 

𝑋𝑚•2 0 0 0 1 
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B2. Marginal and Conditional Transitions in the Physics Playground 

dataset 

Table B2.1 

The Marginal and Conditional Transitions to Engagement 

Model Only given 
Given and 

conditional 
Interaction 

Fixed effect    

 Intercept 0.47 (0.09) *** -0.35 (0.10) *** -0.35 (0.10) *** 

g-Engaged a 1.64 (0.05) *** 1.35 (0.05) *** 1.35 (0.05) *** 

g-Confusion a 0.55 (0.07) *** 0.36 (0.08) *** 0.46 (0.34) 

c-Engaged  1.21 (0.08) *** 1.23 (0.08) *** 

c-Confusion  0.58 (0.10) *** 0.54 (0.11) *** 

c-Frustration  0.42 (0.10) *** 0.42 (0.10) *** 

c-Engaged : g-Confusion  -0.17 (0.35) 

c-Confusion : g-Confusion  0.03 (0.36) 

c-Frustration : g-Confusion  -0.04 (0.40) 

Random effect   

Intercept 0.87 0.68 0.68 

Other information   

 # Parameters 4 7 10 

AIC 16953.55 16610.80 16614.73 

BIC 16985.35 16666.45 16694.22 

Deviance 16945.55 16596.80  16594.73  

Note. a* the reference affective states were boredom and frustration. g-* given 

affective state. c-* conditional affective state. The units of coefficients were the 

natural log of odds between transitions, and values in the parentheses were 

standard errors. For example, in the model with only the given affective state, 

the coefficient of confusion → engagement was 0.55, which means that the odds 

of confusion → engagement was 1.73 (= e0.55) times that of boredom/frustration 

→ engagement.   
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Table B2.2 

The Marginal and Conditional Transitions to Confusion 

Model Only given 
Given and 

conditional 
All interactions One interaction 

Fixed effect    

Intercept −3.90 (0.19) *** −4.04 (0.21) *** −4.07 (0.24) *** −4.12 (0.21) *** 

g-Engaged 0.69 (0.17) *** 0.57 (0.17) ** 0.68 (0.31) * 0.83 (0.19) *** 

g-Confusion 1.91 (0.17) *** 1.68 (0.18) *** 1.68 (0.19) *** 1.63 (0.18) *** 

g-Frustration 0.91 0.19) *** 0.77 (0.20) *** 0.74 (0.48) 0.73 (0.19) *** 

c-Engaged  0.24 (0.16) 0.40 (0.25) 0.51 (0.17) ** 

c-Confusion 0.89 (0.17) *** 0.78 (0.26) ** 0.88 0.17) *** 

c-Frustration 0.22 (0.19) 0.21 (0.31) 0.22 (0.19) 

c-Engaged : g-Engaged  −0.27 (0.34) −0.47 (0.13) *** 

c-Confusion : g-Engaged  0.22 (0.36)  

c-Frustration : g-Engaged  0.07 (0.41)  

c-Engaged : g-Frustration 0.10 (0.51)  

c-Confusion : g-Frustration −0.10 (0.56) 

c-Frustration : g-Frustration −0.06 (0.56) 

Random effect    

Intercept 1.25 1.12 1.09 1.09 

Other information    

 # Parameters 5 8 14 9 

AIC 9592.52 9524.24 9521.89 9512.96 

BIC 9632.26 9587.83 9633.18 9584.50 

Deviance 9582.52 9508.24  9493.89 9494.96 

Note. In the model with all interactions, the coefficients of the interactions 

between conditional states and given frustration were small and might be 

unnecessary. Moreover, the interaction between conditional and given 

engagement was negative, while the interactions between the other conditional 

states and given engagement were positive. This suggests that the strength of 

engagement → confusion may be weaker when the conditional state was 

engagement than when the conditional state was the others. Thus, we 

implemented a model with only the interaction between conditional and given 

engagement. 
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Table B2.3 

The Marginal and Conditional Transitions to Frustration 

Model Only given 
Given and 

conditional 
Interaction 

Fixed effect    

 Intercept −3.43 (0.10)*** −3.15 (0.16)*** −3.15 (0.19)*** 

g-Confusion 0.55 (0.10) *** 0.46 (0.10) *** 0.32 (0.56) 

g-Frustration 1.52 (0.08) *** 1.30 (0.08) *** 1.28 (0.08) *** 

g-Boredom 0.43 (0.13) *** 0.25 (0.14) 0.28 (0.23) 

c-Engaged  −0.37 (0.14) ** −0.38 (0.17) * 

c-Confusion  0.11 (0.16) 0.15 (0.20) 

c-Frustration  0.71 (0.14) *** 0.74 (0.18) *** 

c-Engaged : g-Confusion  0.28 (0.57) 

c-Confusion : g-Confusion  −0.07 (0.59) 

c-Frustration : g-Confusion  0.01 (0.61) 

c-Engaged : g-Boredom  −0.01 (0.33) 

c-Confusion : g-Boredom  0.54 (0.49) 

c-Frustration : g-Boredom  −0.27 (0.35) 

Random effect   

Intercept 1.28 1.04 1.03 

Other information   

 # Parameters 5 8 14 

AIC 8737.50 8576.73 8583.71 

BIC 8777.24 8640.32 8695.00 

Deviance 8727.50 8560.73 8555.71 
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Table B2.4 

The Marginal and Conditional Transitions to Boredom 

Model Only given 
Given and 

conditional 
All interactions One interaction 

Fixed effect     

Intercept −4.58 (0.16) *** −3.20 (0.18) *** −3.26 (0.18) *** −3.21 (0.18) *** 

g-Frustration 1.15 (0.12) *** 0.99 (0.13) *** 1.52 (0.26) *** 1.13 (0.14) *** 

g-Boredom 2.70 (0.09) *** 2.22 (0.09) *** 2.24 (0.09) *** 2.21 (0.09) *** 

c-Engaged  −1.37 (0.10) *** −1.31 (0.10) *** −1.38 (0.10) *** 

c-Confusion  −1.41 (0.17) *** −1.38 (0.19) *** −1.42 (0.17) *** 

c-Frustration −1.02 (0.15) *** −0.79 (0.17) *** −0.83 (0.17) *** 

c-Engaged : g-Frustration −0.59 (0.31) 

c-Confusion : g-Frustration −0.36 (0.45) 

c-Frustration : g-Frustration −0.98 (0.35) ** −0.60 (0.29) * 

Random effect    

Intercept 2.38 1.95 1.94 1.96 

Other information    

 # Parameters 4 7 10 8 

AIC 5978.24 5793.89 5791.75 5791.38 

BIC 6010.04 5849.54 5871.24 5854.97 

Deviance 5970.24 5779.89 5771.75 5775.38 
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B3. Marginal and Conditional Transitions in the vMedic dataset 

Table B3.1 

The Marginal and Conditional Transitions to Engagement 

 
Only given 

Given and 

conditional 
All interactions One interaction 

Fixed effect     

 Intercept 0.01 (0.16) 0.06 (0.22) 0.07 (0.22) 0.07 (0.22) 

g-Engaged 0.79 (0.18) *** 0.80 (0.18) *** 0.78 (0.18) *** 0.80 (0.18) *** 

g-Confusion −0.15 (0.23) −0.19 (0.23) −0.20 (0.65) −0.28 (0.24) 

g-Others −1.59 (0.20) *** −1.07 (0.21) *** −1.05 (0.21) *** −1.04 (0.21) *** 

c-Engaged  0.19 (0.20) 0.22 (0.21) 0.19 (0.20) 

c-Confusion  −0.32 (0.25) −0.45 (0.28) −0.30 (0.26) 

c-Frustration  −0.05 (0.44) 0.00 (0.49) −0.04 (0.44) 

c-Others  −0.96 (0.23) *** −1.01 (0.24) *** −1.02 (0.23) *** 

c-Engaged : g-Confusion  −0.29 (0.68)  

c-Confusion : g-Confusion  0.44 (0.74)  

c-Frustration : g-Confusion  −0.25 (1.21)  

c-Others : g-Confusion  1.46 (0.94) 1.53 (0.72) * 

Random effect     

Intercept 0.10 0.03 0.05 0.04 

Other information    

 # Parameters 5 9 13 10 

AIC 2126.77 2076.11 2076.77 2073.64 

BIC 2154.35 2125.76 2148.49 2128.80 

Deviance 2066.08 2038.79 2023.53 2029.46 
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Table B3.2 

The Marginal and Conditional Transitions to Confusion 

 Only given Given and 

conditional 
All interactions One interaction 

Fixed effect     

 Intercept −2.47 (0.34) *** −2.43 (0.41) *** −2.62 (0.54) *** −2.36 (0.41) *** 

g-Engaged 0.03 (0.34) 0.04 (0.34) 0.50 (0.66) −0.09 (0.35) 

g-Confusion 0.86 (0.38) * 0.82 (0.39) * 0.74 (0.39) 0.79 (0.39) * 

g-Frustration 0.84 (0.61) 0.66 (0.62) −12.93 

(1151.30) 

0.60 (0.62) 

g-Others −1.71 (0.45) *** −1.46 (0.48) ** −1.17 (0.50) * −1.11 (0.49) * 

c-Engaged  −0.06 (0.33) 0.36 (0.55) −0.04 (0.33) 

c-Confusion  0.54 (0.39) 0.69 (0.60) 0.53 (0.39) 

c-Frustration  0.44 (0.66) 0.76 (1.00) 0.43 (0.66) 

c-Others  −0.44 (0.43) −1.03 (0.74) −1.35 (0.61) * 

c-Engaged : g-Engaged  −0.83 (0.69)  

c-Confusion : g-Engaged  −0.26 (0.77)  

c-Frustration : g-Engaged  −0.56 (1.34)  

c-Others : g-Engaged  0.81 (0.90) 1.45 (0.64) * 

c-Engaged : g-Frustration  14.39 (1151.30) 

c-Confusion : g-Frustration  12.55 (1151.30) 

c-Frustration : g-Frustration  −0.49 (2295.76) 

c-Others : g-Frustration  1.68 (2533.12) 

Random effect     

Intercept 0.65 0.48 0.50 0.48 

Other information    

 # Parameters 6 10 18 11 

AIC 983.07 982.55 985.24 979.19 

BIC 1016.17 1037.71 1084.54 1039.87 

Deviance 887.69 892.80 877.98 887.81 
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Table B3.3 

The Marginal and Conditional Transitions to Frustration 

 
Only given 

Given and 

conditional 
Interaction 

Fixed effect    

 Intercept −4.46 (0.39) *** −3.63 (0.60) *** −3.43 (0.66) *** 

g-Confusion 1.30 (0.47) ** 1.20 (0.49) * 0.84 (1.32) 

g-Frustration 0.12 (1.11) 0.19 (1.13) −0.02 (1.18) 

g-Boredom 0.24 (0.66) 0.03 (0.68) −0.59 (1.30) 

g-Others −2.29 (1.04) * −2.42 (1.09) * −2.12 (1.28) 

c-Engaged  −0.99 (0.57) −1.20 (0.75) 

c-Confusion  −0.54 (0.74) −0.47 (1.03) 

c-Frustration  0.16 (0.97) −0.19 (1.30) 

c-Others  −0.47 (0.74) −1.23 (1.09) 

c-Engaged : g-Confusion  0.30 (1.52) 

c-Confusion : g-Confusion  −0.08 (1.74) 

c-Frustration : g-Confusion  0.69 (2.11) 

c-Others : g-Confusion  1.56 (1.97) 

c-Engaged : g-Boredom  0.72 (1.75) 

c-Confusion : g-Boredom  −20.85 (94682.12) 

c-Frustration : g-Boredom  −19.86 (81777.67) 

c-Others : g-Boredom  2.22 (1.94) 

Random effect    

Intercept 0.98 0.66 0.76 

Other information   

 # Parameters 6 10 18 

AIC 279.29 283.55 296.75 

BIC 312.39 338.71 396.05 

Deviance 232.43 237.91 232.21 
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Table B3.4 

The Marginal and Conditional Transitions to Boredom 

 

Only given 
Given and 

conditional 
Interaction 

One 

conditional 

state 

Fixed effect     

 Intercept −2.80 (0.15) 

*** 

−2.46 (0.33) *** −1.03 

(11018.32) 

−2.72 (0.15) *** 

g-Frustration 0.07 (0.75) 0.05 (0.75) −15.15 

(3203.64) 

0.04 (0.75) 

g-Boredom 1.70 (0.25) *** 1.73 (0.25) *** 1.73 (0.24) *** 1.76 (0.25) *** 

g-Others −0.64 (0.27) * −0.21 (0.31) −0.21 (0.32) −0.21 (0.31) 

c-Engaged  −0.24 (0.30) −0.29 (0.29)  

c-Confusion  −0.35 (0.43) −0.33 (0.42)  

c-Frustration  −0.44 (0.80) −0.43 (0.81)  

c-Others  −1.05 (0.41) * −1.08 (0.40) ** −0.82 (0.32) ** 

c-Engaged : g-Frustration  15.92 (3203.64) 

c-Confusion : g-Frustration  0.57 (3813.21) 

c-Frustration : g-Frustration  −0.44 (7144.74) 

c-Others : g-Frustration  −0.96 (7059.00) 

Random effect     

Intercept 0.17 0.10 0.09 0.14 

Other information    

 # Parameters 5 9 13 6 

AIC 872.76 872.54 877.83 867.42 

BIC 900.34 922.19 949.54 900.52 

Deviance 832.73 835.49 834.16 829.85 

Note. In the model with given and conditional states, only the coefficient of c-

Others was statistically significant. Thus, we implemented a model with only 

this conditional state. 
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B4. Marginal and Conditional Transitions in the Betty’s Brain dataset 

Table B4.1 

The Marginal and Conditional Transitions to Engagement 

 
Only given 

Given and 

conditional 
Interaction 

Fixed effect    

 Intercept 0.62 (0.21) ** −0.36 (0.32) −0.28 (0.33) 

g-Engaged 1.41 (0.20) *** 1.28 (0.20) *** 1.28 (0.21) *** 

g-Confusion 0.60 (0.30) * 0.49 (0.30) −0.76 (1.18) 

c-Engaged  1.17 (0.28) *** 1.09 (0.29) *** 

c-Confusion  1.07 (0.38) ** 1.07 (0.42) * 

c-Frustration  0.45 (0.38) 0.26 (0.39) 

c-Engaged : g-Confusion  1.29 (1.22) 

c-Confusion : g-Confusion  0.92 (1.33) 

c-Frustration : g-Confusion  2.22 (1.47) 

Random effect    

Intercept 0.38 0.25 0.25 

Other information    

 # Parameters 4 7 10 

AIC 1325.39 1311.15 1314.18 

BIC 1346.88 1348.77 1367.92 

Deviance 1234.44 1235.07 1232.15 
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Table B4.2 

The Marginal and Conditional Transitions to Confusion 

 Only given Given and 

conditional 

Interaction 

Fixed effect    

 Intercept −3.67 (0.73) *** −3.34 (0.81) *** −2.65 (0.82) ** 

g-Engaged 0.50 (0.74) 0.60 (0.76) −15.79 (1597.64) 

g-Confusion 1.69 (0.80) * 1.77 (0.81) * 2.41 (0.96) * 

g-Frustration 1.56 (0.81) 1.63 (0.82) * 1.43 (1.16) 

c-Engaged  −0.45 (0.49) −1.88 (0.86) * 

c-Confusion  −0.32 (0.60) −1.64 (1.00) 

c-Frustration  −0.53 (0.67) −2.21 (1.34) 

c-Engaged : g-Engaged  17.18 (1597.64) 

c-Confusion : g-Engaged  17.28 (1597.64) 

c-Frustration : g-Engaged  16.64 (1597.64) 

c-Engaged : g-Frustration  0.71 (1.29) 

c-Confusion : g-Frustration  −16.76 (5872.44) 

c-Frustration : g-Frustration  2.15 (1.74) 

Random effect    

Intercept 0.42 0.42 0.39 

Other information    

 # Parameters 5 8 14 

AIC 683.19 688.24 686.36 

BIC 710.06 731.23 761.59 

Deviance 625.30 624.62 613.19 
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Table B4.3 

The Marginal and Conditional Transitions to Frustration 

 Only given Given and 

conditional 

Interaction 

Fixed effect    

 Intercept −3.34 (0.18) *** −2.47 (0.41) *** −2.80 (0.56) *** 

g-Confusion 0.54 (0.43) 0.41 (0.44) 1.24 (1.29) 

g-Frustration 1.22 (0.36) *** 0.99 (0.38) ** 1.02 (0.39) ** 

g-Boredom 1.46 (0.38) *** 1.07 (0.40) ** 1.68 (0.76) * 

c-Engaged  −0.97 (0.41) * −0.63 (0.57) 

c-Confusion  −0.81 (0.61) −0.39 (0.76) 

c-Frustration  0.64 (0.49) 1.06 (0.65) 

c-Engaged : g-Confusion  −0.66 (1.40) 

c-Confusion : g-Confusion  −0.92 (1.74) 

c-Frustration : g-Confusion  −1.69 (1.71) 

c-Engaged : g-Boredom  −0.91 (0.98) 

c-Confusion : g-Boredom  −14.97 (161.91) 

c-Frustration : g-Boredom  −0.57 (1.13) 

Random effect    

Intercept 0.39 0.25 0.24 

Other information    

 # Parameters 5 8 14 

AIC 639.48 624.19 633.62 

BIC 666.35 667.18 708.86 

Deviance 587.01 579.22 577.77 
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Table B4.4 

The Marginal and Conditional Transitions to Boredom 

 Only given 
Given and 

conditional 
Interaction 

Fixed effect    

 Intercept −4.47 (0.45) *** −3.80 (0.57) *** −3.26 (1.79) 

g-Frustration 1.37 (0.44) ** 1.32 (0.45) ** 1.50 (0.86) 

g-Boredom 1.00 (0.34) ** 1.00 (0.34) ** 1.01 (0.35) ** 

c-Engaged  −0.59 (0.35) −0.60 (0.37) 

c-Confusion  −0.62 (0.66) −0.88 (0.74) 

c-Frustration  −1.32 (0.72) −1.54 (0.86) 

c-Engaged : g-Frustration  −0.55 (1.05) 

c-Confusion : g-Frustration  0.94 (1.65) 

c-Frustration : g-Frustration  −0.42 (1.65) 

Random effect    

Intercept 3.53 3.12 2.83 

Other information    

 # Parameters 4 7 10 

AIC 555.39 556.64 561.56 

BIC 576.88 594.26 615.30 

Deviance 441.59 441.25 442.16 
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B5. Prediction performance 

Table B5 

The prediction performance in the three datasets 

Note. a: The F1 scores could not be computed because the predicted outcome 

was constant.  

Target state Model Accuracy Kappa F1 AUC 

Physics Playground dataset 

Engagement Given and conditional states 0.819 0.161 0.898 0.737 

 Only given states 0.804 0.000 0.891 0.689 

Confusion Given and conditional states 0.927 0.000 - a 0.663 

 Only given states 0.927 0.000 - 0.628 

Frustration Given and conditional states 0.931 0.000 - 0.714 

 Only given states 0.931 0.000 - 0.654 

Boredom Given and conditional states 0.946 0.000 - 0.803 

 Only given states 0.946 0.000 - 0.764 

vMedic dataset 

Engagement Given and conditional states 0.706 0.413 0.730 0.767 

 Only given states 0.708 0.417 0.714 0.722 

Confusion Given and conditional states 0.500 0.000 - 0.670 

 Only given states 0.500 0.000 - 0.644 

Frustration Given and conditional states 0.500 0.000 - 0.678 

 Only given states 0.500 0.000 - 0.618 

Boredom Given and conditional states 0.500 0.000 - 0.654 

 Only given states 0.500 0.000 - 0.664 

Betty’s Brain dataset 

Engagement Given and conditional states 0.838 0.092 0.909 0.630 

 Only given states 0.832 0.000 0.907 0.610 

Confusion Given and conditional states 0.941 0.000 - 0.589 

 Only given states 0.941 0.000 - 0.606 

Frustration Given and conditional states 0.948 0.000 - 0.650 

 Only given states 0.948 0.000 - 0.587 

Boredom Given and conditional states 0.943 0.000 - 0.667 

 Only given states 0.943 0.000 - 0.626 
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