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Abstract

Recent advances in artificial intelligence (AI) and crowd-
sourcing have shown success in enhancing learning experi-
ences and outcomes in online education. This paper studies
a student performance prediction problem where the objec-
tive is to predict students’ outcomes in online courses based
on their behavioral data. In particular, we focus on address-
ing the limitation of current student performance prediction
solutions that often make inaccurate predictions for students
from underrepresented demographic groups due to the lack
of training data and differences in behavioral patterns across
groups. We develop DebiasEdu, a crowd—Al collaborative
debias framework that melds the Al and crowd intelligence
through 1) a novel gradient-based bias identification mech-
anism and 2) a bias-aware crowdsourcing interface and bias
calibration design to achieve an accurate and fair student per-
formance prediction. Evaluation results on two online courses
demonstrate that DebiasEdu consistently outperforms state-
of-the-art Al fair Al, and crowd—Al baselines by achieving
an optimized student performance prediction in terms of both
accuracy and fairness.

Introduction

Emerging Al and crowdsourcing techniques have been uti-
lized to enhance online education activities (e.g., assignment
and exam assessment, interactions on online learning plat-
forms, and personalized learning) (Chen et al. 2021; Wamb-
sganss et al. 2022; Troussas, Krouska, and Sgouropoulou
2020). One of the critical problems in online education is
student performance prediction (Albreiki, Zaki, and Alash-
wal 2021; Waheed et al. 2020; Qiu et al. 2022), which
aims to predict a student’s final performance result in a
course (e.g., Fail, Pass, and Distinction) based on the be-
havioral data of students (Adnan et al. 2021; Qiu et al. 2022;
Li et al. 2020). The prediction results can provide feed-
back to improve a student’s metacognitive ability (Boud,
Lawson, and Thompson 2015) and assist educational in-
stitutions in designing effective mechanisms to improve
academic outcomes and avoid dropout (Rastrollo-Guerrero,
Go6mez-Pulido, and Durdn-Dominguez 2020). Moreover, in
the large-scale online education (e.g., Coursera and MOOC),
automatic performance prediction is a critical feedback to
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enhance both learning and teaching since it is difficult for
instructors to pay a close attention to each student’s perfor-
mance in such courses (Xu, Yuan, and Liu 2020). To ac-
curately predict a student’s performance, we focus on on-
line activity data (e.g., reviewing course materials, complet-
ing quizzes, and engaging in collaborative activities) as it
provides valuable insights into the level of engagement and
effort of a student from various aspects (e.g., learning new
contents, testing acquired knowledge, and discussing with
peers) (Kuzilek, Hlosta, and Zdrahal 2017). In addition, the
activity data is beneficial compared to other types of data
(e.g., assignment or quiz scores) since it is easy to collect
and measure at any time in online education, which enables
early prediction and timely assistance for students (Adnan
et al. 2021).

Al solutions that utilize machine learning models and
deep neural networks have been developed to address the
student performance prediction problem (Wasif et al. 2019;
Hasan et al. 2020; Waheed et al. 2020; Qiu et al. 2022).
However, these solutions primarily focus on achieving high
prediction accuracy but pay less attention to demographic
biases, where underrepresented students often receive less
accurate prediction results due to the lack of training data
for those students and differences in their behavioral pat-
terns (Baker and Hawn 2022). For example, in a student
performance prediction application, a deep sequential neu-
ral network-based model (Li et al. 2020) can achieve a 0.62
accuracy on the underrepresented age group (i.e., age greater
than 35) that includes 24.4% students, while achieving a
0.75 accuracy on other students in the class. Figure 1 vi-
sualizes the online activities every two weeks of underrep-
resented students with incorrect prediction results from Al
models. In particular, Figure 1(a) shows a student with an ac-
tual result of Pass but is predicted as a Distinction (even bet-
ter than pass) by Al Figure 1(b) shows a student with a Fail
result but is predicted as a Pass by Al If we provide such in-
accurate prediction results to the underrepresented students,
it could mislead them to have an inaccurate self-assessment
and thus complete too few activities in the course (or waste
time on too many activities), which could further exacerbate
their potential disadvantages in online education (Kizilcec
and Lee 2020).

Fair Al solutions have been developed to address the de-
mographic bias problem (Zafar et al. 2019; Bendekgey and
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Figure 1: Examples of Biased Al Prediction.

Sudderth 2021; Kini et al. 2021; Jiang and Pardos 2021).
These solutions often address the demographic bias by in-
creasing the weights of underrepresented samples during
training (e.g., sample re-weighting) (Kini et al. 2021) or in-
tegrating fairness regularization into the training objective
(e.g., fairness constraints and adversarial learning) (Zafar
et al. 2019; Jiang and Pardos 2021). However, these solu-
tions often achieve results with improved fairness at the cost
of reduced overall accuracy due to the tradeoff between fair-
ness and accuracy of data-driven models (Berk et al. 2017),
which is also observed in the online education domain (Sti-
nar and Bosch 2022). Motivated by the limitations of the
above fair Al solutions, we propose to leverage human intel-
ligence from crowdsourcing platforms to address the demo-
graphic bias of Al. We refer to such intelligence as crowd in-
telligence, which has been leveraged to improve Al models
in different scenarios (e.g., image classification (Sener and
Savarese 2018), facial analysis (Scheuerman et al. 2020),
and disaster damage assessment (Zhang et al. 2019a)). In our
work, crowd workers predict a student’s final performance
based on their high-level understandings of a student’s ac-
tivities (e.g., a student’s general trend of activities compared
to the average, consistent hard work, and extra hard work
before the final), which is difficult for the AI models to
learn given the lack of training data from the underrepre-
sented groups in online education applications. For exam-
ple, it should be a relatively easy task for humans to predict
a Pass result for Figure 1(a) and a Fail result for Figure 1(b)
based on their prior knowledge (including common sense),
which does not require additional training data compared to
the Al models. For an empirical effectiveness examination
of using crowd intelligence in the student performance pre-
diction problem, please refer to the Crowdsourcing Settings
and Pilot Study in the Evaluation section. Motivated by the
aforementioned cognitive power of crowd intelligence, we
develop a bias-aware crowd-Al collaborative student per-
formance prediction framework that jointly explores the col-
lective strength of Al and crowd intelligence to effectively
predict a student’s performance while addressing the demo-
graphic bias in the prediction results. However, two critical
technical challenges exist, which are elaborated as follows.
The first challenge lies in how to effectively identify bi-
ased Al results from different demographic groups to achieve
an optimized tradeoff between accuracy and fairness. In par-
ticular, it is challenging to select a subset of samples where
the Al models are likely to make inaccurate predictions due

to the lack of training data and different behavioral patterns
in underrepresented groups. One possible solution to over-
come this challenge is to leverage current active learning
methods (Abdar et al. 2021; Xie et al. 2022; Ren et al. 2021)
to select data samples that are difficult for the Al models to
predict based on uncertainty measurements or loss function
designs. However, these active learning methods often fo-
cus on improving the prediction accuracy and tend to select
fewer samples from underrepresented groups that contribute
less to overall prediction accuracy. Hence, these methods
can result in improved accuracy at the cost of reduced fair-
ness. There have also been deep learning solutions that se-
lect biased Al results to boost the overall fairness by pre-
dicting the impact of training samples on the model fair-
ness (Kou et al. 2021; Anahideh, Asudeh, and Thirumuru-
ganathan 2022). Nevertheless, these solutions cannot accu-
rately identify the biased results from the festing samples in
the absence of the ground-truth labels.

The second challenge lies in how to effectively address
demographic bias using potentially biased crowd intelli-
gence. Recent efforts in crowd—Al collaboration (Sener and
Savarese 2018; Yoo and Kweon 2019; Zhang et al. 2022)
have been made to address this challenge. These approaches
often utilize crowd intelligence to improve prediction ac-
curacy and fairness by troubleshooting failure cases of Al
models under the assumption that the crowd can provide ac-
curate and fair responses. However, cognitive bias of crowd
workers (Draws et al. 2021) may have a negative impact on
their annotation performance (Hettiachchi et al. 2020). For
example, crowd workers may have the confirmation bias of
being conservative in predicting a Distinction result due to
their preexisting beliefs that Distinction is assigned to a re-
ally small percentage of students. Another example of cogni-
tive bias is the anchoring effect, where crowd workers can be
overly influenced by the first few examples they see. Hence,
the generated crowd feedback can possibly mislead the Al
models to learn inaccurate information in their predictions.

To address the above challenges, we develop DebiasEdu,
a crowd—Al collaborative debias framework that effectively
integrates Al and crowd intelligence to achieve accurate and
fair student performance prediction in online education. To
address the first challenge, we design a gradient-based Al
bias identification module that analyzes the gradient vari-
ation of training data to select biased Al results. To over-
come the second challenge, we develop a novel bias-aware
crowdsourcing interface and a crowd—AlI fusion mechanism
to address the demographic bias of Al and the cognitive
bias of the crowd. To the best of our knowledge, the Debi-
asEdu is the first crowd—Al collaborative framework to ad-
dress the algorithmic demographic bias in online education.
We evaluate the DebiasEdu using a Social Science course
and a STEM (Science, Technology, Engineering, and Math)
course on a widely used online learning platform Open Uni-
versity (Kuzilek, Hlosta, and Zdrahal 2017). Evaluation re-
sults demonstrate that our DebiasEdu consistently outper-
forms state-of-the-art Al fair Al, and crowd—AlI baselines in
terms of student performance prediction accuracy and fair-
ness. Our main contributions are summarized as follows:

* We develop a crowd—Al collaborative debias framework,



DebiasEdu, to achieve an accurate and fair student per-
formance prediction using their behavioral data, which
can be used to provide feedback to students and enhance
their metacognitive abilities.

* We develop a novel bias identification mechanism and
a crowdsourcing interface design to address two impor-
tant technical challenges: 1) identifying biased Al results
to achieve an optimized tradeoff between accuracy and
fairness and 2) addressing demographic bias using po-
tentially biased crowd intelligence.

* We perform extensive experiments to evaluate the De-
biasEdu on two real online courses from a widely used
online learning platform. Evaluation results demonstrate
significant performance gains of DebiasEdu compared to
state-of-the-art baselines in both accuracy and fairness.

Related Work

Al and Crowdsourcing for Online Education. Several ef-
forts have been made to improve learning experiences and
outcomes in online education with the recent advances in
Al and crowdsourcing. For example, Abdi, Khosravi, and
Sadiq (2020) designs a crowdsourcing-based learning sys-
tem to assess students’ knowledge state by tracing their per-
formance on crowdsourcing knowledge assessment tasks.
Prihar et al. (2021) utilizes crowdsourced tutoring to in-
crease students’ next-problem accuracy in online learning
and develops a method to rank the tutoring effectiveness
of different crowd workers. Wambsganss et al. (2022) de-
velops a deep-learning-based student argumentation self-
evaluation system that leverages nudging theory techniques
to help students write convincing texts. Qadir (2023) ana-
lyzes how to use large language models to benefit students
(e.g., customized explanations) while minimizing negative
impacts (e.g., misinformation). However, current Al and
crowdsourcing approaches often ignore the algorithmic de-
mographic bias in online education to ensure fairness.
Algorithmic Demographic Bias. There is a growing
trend of analyzing and addressing algorithmic demographic
bias in computational applications, such as face recognition,
text classification, and educational decision-making. For ex-
ample, Scheuerman et al. (2020) examines the limitations
of race and gender annotation and proposes solutions to re-
duce the demographic bias in facial datasets. Madaio et al.
(2022) conducts structured interviews with Al practitioners
to identify the challenges and needs in addressing the de-
mographic bias in text classification. Moreover, algorithmic
demographic bias has been examined in education. For ex-
ample, Yang et al. (2021) analyzes the potential misuse of
Al due to algorithmic bias that can inhibit human rights and
lead to demographic inequality in education (e.g., exagger-
ating demographic bias in Al decision-making). Baker and
Hawn (2022) studies the algorithmic bias in education and
proposes potential ways to mitigate the bias (e.g., improving
fairness in data collection and incentivizing bias analysis in
model evaluation). To the best of our knowledge, this paper
is the first crowd—AlI collaborative framework to address the
algorithmic demographic bias in online education.
Crowd-AlI Collaboration. Our paper is also closely re-

lated to current advances in crowd—Al collaborative ap-
proaches to integrate the strengths of Al and crowd intelli-
gence in various applications (e.g., object detection, human
pose estimation, image annotation, and neural architecture
search). For instance, Sener and Savarese (2018) develops a
deep active learning scheme that identifies a core set of rep-
resentative samples and leverages the crowd on the selected
samples to improve object detection accuracy. Yoo and
Kweon (2019) builds a crowd—Al framework that leverages
a task-agnostic loss design to efficiently integrate Al and the
crowd in human pose estimation. Kobayashi, Wakabayashi,
and Morishima (2021) proposes a crowd—Al scheme that uti-
lizes a divide-and-conquer task assignment strategy to opti-
mize the image annotation performance. Zhang et al. (2022)
designs a crowd-guided framework for neural architecture
search through estimation-theory-based crowd—Al integra-
tion. However, these crowd—AlI collaborative approaches of-
ten ignore the demographic bias of Al and the cognitive bias
of the crowd and cannot ensure the fairness of the system.

Problem Formulation

In this section, we formally present our bias-aware crowd—
Al collaborative student performance prediction problem.
We first introduce a few key concepts and notations to de-
fine the input and output of student performance prediction.

Let D = {D;,Ds>,..., D)} represent the demographic
attribute of students (e.g., age, gender, race, or highest edu-
cation), where the demographic attribute can be classified
into M different categories. For example, the highest ed-
ucation attribute can be categorized into high school, un-
dergraduate, master, and doctoral. Among demographic at-
tribute categories, we define underrepresented groups U to
be groups of traditionally underrepresented students (e.g.,
female students in STEM courses).

Definition 1 Demographic Data (X 7): We define X P =
{XP XP, .., XP} to be the aforementioned demographic
attribute categories of all students in a course, where I is
the total number of students. In particular, X7 for i €
{1,2,..., I'} represents the demographic attribute category of
the i*" student, where X € {Dy, Dy, ..., Dps}.

Demographic data are widely used in student performance
prediction (Kuzilek, Hlosta, and Zdrahal 2017; Adnan et al.
2021; Waheed et al. 2020; Fancsali et al. 2018) due to its
criticality in predicting each student’s performance accu-
rately (Li et al. 2021; Sabnis, Yu, and Kizilcec 2022), though
the use of such data is often debated (Baker and Hawn 2022).
Moreover, the demographic bias often stems from the lack of
data and difference in behavior of underrepresented groups
instead of the demographic information itself (Baker and
Hawn 2022), as explained in the Introduction section.

It is important to note that in our work, demographic data
is not leveraged to make judgements on any students, which
is different from the controversy of using demographics for
decision-making (e.g., recidivism prediction (Chouldechova
2017), Al-assisted recruiting (Hunkenschroer and Luetge
2022), and automated grade assignment (Baker and Hawn
2022)). Instead, demographic data is only utilized to identify



and address the demographic bias and improve the predic-
tion accuracy on underrepresented students. The improved
prediction results can then be used to provide feedback to
help underrepresented students enhance their metacogni-
tive ability. In addition, to ensure privacy, the demographic
data is anonymized, making it impossible to link the demo-
graphic information to any individual (Kuzilek, Hlosta, and
Zdrahal 2017).

Definition 2 Behavioral Data (X B): We define X8 =
{XE, XB, .., XB} as the study behavior (e.g., late assign-
ment records, online activities, and previous performance in
other courses) of all students in a course, where XZB for
i € {1,2,...,I} is the study behavior of the i*" student.

The behavioral data in our problem setting is measured
by activities (e.g., clickstream data on different activities)
on the online learning platform per day during the semester,
which is widely used in student performance prediction
frameworks (Adnan et al. 2021; Qiu et al. 2022; Karimi et al.
2020; Chu et al. 2021). The online activities indicate a stu-
dent’s effort and engagement from various aspects (e.g., re-
viewing course materials, completing course quizzes, par-
ticipating in topic forums and collaborative activities) in an
online course (Kuzilek, Hlosta, and Zdrahal 2017). Specifi-
cally, we leverage clickstream data to measure online activi-
ties as it is both easily collectible and effective in represent-
ing a student’s learning trajectory across different activities
in online education (Park et al. 2017; Chu et al. 2021). More-
over, clickstream data is demonstrated to effectively capture
a student’s behavioral pattern (e.g., conflict, confusion, and
motivation in decision-making), which provides important
information in predicting a student’s performance (Rhim and
Gweon 2022; Park et al. 2017).

Definition 3 Student Final Performance (L): We define

L = {Ly, Ls,...,Ls} to be the final grade (e.g, Fail, Pass,

and Distinction) of all students in a course. In particular, L;

for i € {1,2,..., I} represents the final performance of the
h student, which is assigned by the course instructor.

Definition 4 Framework Prediction (i): We define L =
{L1, L2, ..., L1} as the prediction of our framework, where
L; represents the framework prediction for the i*" student.

The overall objective of our bias-aware crowd—Al collab-
orative framework is to explore Al and crowd intelligence
to achieve both accurate and fair prediction results of stu-
dent performance (i.e., maximizing the prediction accuracy
while minimizing the demographic bias) as follows

argmaXPr(E =L | X%, XP), vi<i<I

" T B D . M

argminF(L;,L; | X7, X7), V1<i<I
where F(-,-) denotes the fairness metric to measure the
performance disparity among different demographic groups
given the demographic attribute D). The problem is chal-
lenging in terms of 1) identifying biased Al results to
achieve an optimized tradeoff between accuracy and fairness
and 2) addressing demographic bias using potentially biased
crowd intelligence.
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Figure 2: Overview of the DebiasEdu framework.

Solution

The DebiasEdu is a bias-aware crowd-Al collaborative
approach that integrates Al and crowd intelligence to
achieve accurate and fair student performance prediction.
The overview of DebiasEdu is presented in Figure 2. In par-
ticular, the DebiasEdu consists of two key modules:

* Gradient-based Bias Identification (GBI): it analyzes the
variation in gradients of training samples to identify bi-
ased Al results from different demographic groups.

* Crowd-guided Bias Calibration (CBC): it creates a bias-
aware crowdsourcing interface design and a crowd-
guided calibration model to address the demographic
bias of Al and the cognitive bias of the crowd.

Gradient-based Bias Identification (GBI)

To effectively predict student final performance L using
inputs of behavioral data X Z and demographic attributes
X P, we first design two key networks as follows.

To extract useful information from the behavioral data
X B for student performance prediction (e.g., consistent
hard work, extra hard work before the final), we design a
behavioral data embedding network f(-) as follows:

=f(XP), VI<k<K 2

where E,? represents the generated embedding of the be-
havioral data X2 for the k*" student. K is the total number
of students in the training set. In particular, we utilize the
long short-term memory (LSTM) model as the behavioral
data embedding network f(-) in our setting, which has been
shown to be effective in extracting information from sequen-
tial data (Li et al. 2020; Hassan et al. 2019).

After feature embedding, we build a student performance
prediction network ¢(-,-) that leverages the generated be-
havioral embedding and the demographic information to
predict a student’s final result as:

LM =g(BP, XP), V1<k<K ©)
where Lﬁl is the Al prediction for the k*" student’s final per-
formance. In particular, the performance prediction network
g(+,-) is a multilayer perceptron consisting of a sequence of
fully connected feedforward neural network layers to predict



a student’s performance by comprehensively examining the
embedded behavioral data.

To guide the behavioral data embedding network f(-) to
effectively capture useful behavior pattern information (e.g.,
consistent work throughout the semester) and train the per-
formance prediction network g(-, ) to accurately predict a
student’s final performance result, we define the objective
function £ 4 for the AI model as follows:

Lar = Lcx (g (f(X,?),X,?) ,Lk) , VI<E<SK &

where Lcg is the cross entropy loss to measure classification
accuracy. Ly, is the ground truth label of the k** student’s
final performance on the training set (Definition 3).

Given the designed Al model, the key focus of the GBI
module is identifying biased Al results from the testing set
for crowd intelligence to improve framework prediction fair-
ness. We first define the set of these Al results as follows:

Definition 5 Crowdsourcing Subset (.S5): We select a sub-
set of students on the testing set where the Al model is
likely to generate inaccurate predictions for crowd workers
to improve. We focus particularly on selecting from under-
represented groups U since these students are more likely
to receive incorrect predictions due to the lack of train-
ing data and difference in behavioral pattern (e.g., older
students often need to complete more activities to achieve
the same result compared to younger students). We for-
mally define the crowdsourcing subset to include the behav-
ioral and demographic data for the selected J students as
S ={{XB,XP} .. {XB XP}}, where J = al.

We refer to the demographic data and behavioral data
(Definition 1 and 2) of students as samples in the rest of
the solution. It is observed that the Al prediction network is
more likely to predict incorrectly for the samples with gra-
dients varying significantly during the training process (Ren
etal. 2018). These samples exhibiting more variant gradients
are more likely to belong to underrepresented groups. This
is because underrepresented samples, with different input
data characteristics (e.g., behavioral patterns) compared to
the non-underrepresented samples, pose greater challenges
for deep neural networks to learn to predict accurately (Ren
et al. 2018). Therefore, we define these samples whose gra-
dients vary significantly during training as the biased train-
ing samples. Our objective is to identify biased training sam-
ples from different demographic groups inversely propor-
tional to the number of students in each group (e.g., more
samples from worse-performing underrepresented groups).

To identify biased training samples using gradient vari-
ation, we first define the training sample gradient V =
{V1,V3,..., Vk} to be the gradients of training samples
with respect to the objective function £ 4; as follows:

0L ar

—E|_—2>A
Vi [a{xf,x,?}

] , VI<k<K 5)
where E[-] denotes the expectation and O denotes the partial
derivative. The training sample gradient can be computed by
the chain rule using derivatives of each neural network layer.

Definition 6 Gradient Variance (V): We define V =
{V1, Va, ..., Vi } to be the variance of sample gradient V:

OLar

Vi = Var {7
X, X}

} , VI<kE<K (6)
where Var|-] denotes the variance. In particular, the variance
of sample gradient can be approximated by the average gra-
dient in different epochs (Chang, Learned-Miller, and Mc-
Callum 2017), where the first several epochs are eliminated
due to unstable performance at the beginning of training.

We select a subset of training samples with the top «
largest gradient variances in the training set (i.e., variant
gradient subset), where « is selected empirically based on
the tradeoff between the algorithmic fairness and the crowd-
sourcing budget. However, it remains challenging to iden-
tify a subset of samples with gradients varying significantly
from the festing set since there are no ground truth annota-
tions available to even train a model and compute gradients.
Therefore, we select the testing samples that share a simi-
lar behavioral pattern as the training samples in the selected
variant gradient subset. This idea is motivated by the fact
that an Al model generates similar predictions and gradi-
ents for input samples with similar characteristics (e.g., be-
havioral patterns) (Charpiat et al. 2019). We introduce the
measurement to identify the crowdsourcing subset S of de-
mographically biased testing samples as follows:

Definition 7 Bias Measurement (B): We define B =
{Bi, Bs, ..., Br} to be the bias measurements of all stud-
ied testing samples. In particular, the bias measurement B;
for the i*" student is formally defined as follows:

K
Bi=Y (|[xf - xP
k=1

where || - ||2 denotes the L2-norm of a vector. In particular,
a lower value of the bias measurement B; indicates a larger
bias (i.e., a higher similarity with the variant gradient subset)
for the i* student in the testing set.

R
2

D,wgigl %

Based on the bias measurement for all testing samples, we
then select the samples with top « lowest B; from the testing
set to generate the crowdsourcing subset .S that primarily
contains underrepresented students who are likely to receive
inaccurate Al predictions. In the next subsection, we discuss
how to use crowd intelligence to address the identified bias.

Crowd-guided Bias Calibration (CBC)

Given the selected crowdsourcing subset S from the GBI
module discussed above, we then design a crowdsourcing
interface and a model calibration mechanism to address the
identified demographic bias while mitigating the negative
impact of cognitive bias from crowd workers as illustrated
in the Introduction section. In particular, we leverage crowd
intelligence to work on the student performance prediction
task and mitigate demographic bias. For an in-depth effec-
tiveness analysis of using the crowd in student performance
prediction, please refer to the Crowdsourcing Settings and
Pilot Study in the Evaluation section.
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Figure 3: Examples of the original behavioral data and our
behavioral data visualization design.

We first design the visualization of behavioral data since
student performance prediction based on behavioral data is
not a trivial task for crowd workers. In particular, humans
are often not good at analyzing the raw data (e.g., dozens or
hundreds of numbers) compared to Al models, which mo-
tivates our design of a clear visualization of the high-level
behavioral patterns (e.g., the general trend of activities and
consistent hard work) to the crowd workers. The behavioral
data X7 (Definition 2) for the i*”* student are their activities
on the online learning platform per day during the semester,
which is shown in Figure 3(a). However, crowd workers
often do not need such detailed information to predict stu-
dent performance accurately. In particular, we observe that
even those students who achieve Distinction results in many
classes do not spend time on every course every day, high-
lighting the fact that accumulative activities within a certain
time period can be more informative to help crowd work-
ers to predict accurately. Therefore, we present the accumu-
lative activities on a bi-weekly basis of a student to crowd
workers using the blue bars shown in Figure 3(b). In addi-
tion to the bar plot of the behavioral data, we also add the
average activities of all students in a course to help crowd
workers make their predictions.

However, crowd workers are observed to have cognitive
bias (Draws et al. 2021), which can lead to inaccurate crowd
prediction in student performance prediction (Hettiachchi
et al. 2020). Therefore, our next question is how to design
a crowdsourcing interface to address the cognitive bias of
the crowd. In particular, confirmation bias is a key cognitive
bias of humans observed in prediction tasks (Draws et al.
2021; Abrahamyan et al. 2016). We define it as follows:

Definition 8 Confirmation Bias: Confirmation bias of the
crowd refers to the fact that crowd workers can be overly
influenced by their preexisting beliefs. For example, crowd
workers can be conservative in predicting a Distinction re-
sult if they believe Distinction is assigned to a really small
percentage of students. The confirmation bias is more ob-
vious when a crowd worker is only presented with the be-
havioral data visualization of a specific student, since they
need to predict completely based on their preexisting beliefs
if no additional information (e.g., annotation examples pro-
vided by the task administrator as reference) is provided to
the crowd workers regarding the labeling tasks.
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Figure 4: Anchoring examples for students in the non-
underrepresented and underrepresented age group.

We design an approach to address the confirmation bias
of the crowd by leveraging the anchoring effect of human
cognition. We first define the anchoring effect as follows:

Definition 9 Anchoring Effect: Anchoring effect refers to
the fact that crowd workers can be influenced by the first few
examples they see and then use these examples as the anchor
for the subsequent prediction.

We can leverage this cognitive characteristic of the crowd
to train the crowd workers to calibrate their preexisting pre-
diction criteria with only a few anchoring examples for each
student performance category (e.g., Fail, Pass, and Distinc-
tion). For instance, anchoring examples selected from the
training set of a STEM course are shown in Figure 4(a), 4(c),
and 4(e). Note that we cannot simply train the Al model
with such anchoring examples since Al models often rely
on a large number of data samples for effectively predic-
tions. Even the few-shot learning methods still depend on
large-scale datasets to pre-train data representations, which
are not available in our problem setting.

In addition, while crowd workers achieve better overall
accuracy and fairness compared to the Al model on the
selected crowdsourcing subset S (Definition 5), the crowd
prediction accuracy of underrepresented groups can still be
worse than the accuracy of non-underrepresented groups.
Given the difference in behavioral patterns among different
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Figure 5: Crowdsourcing interface instruction and task design to address the demographic and confirmation bias. For the task
of each student, we present the anchoring examples of the demographic group to which this student belongs in the instructions.

demographic groups, the demographic bias can be further
addressed by showing anchoring examples of each demo-
graphic group to crowd workers. For instance, anchoring ex-
amples for students in the underrepresented age group (i.e.,
age > 35) of the STEM course are shown in Figure 4(b),
4(d), and 4(f). We can clearly observe the behavioral dif-
ference between these underrepresented examples and the
anchoring examples selected from the non-underrepresented
group shown in Figure 4(a), 4(c), and 4(e): underrepresented
students need to complete much more activities to achieve
the same result compared to non-underrepresented students.
Observed behavioral difference demonstrates that the crowd
prediction accuracy and fairness can be further enhanced
by presenting accurate anchoring examples from each de-
mographic group to help crowd workers form accurate per-
formance criteria. Our pilot studies show an 18.9% perfor-
mance improvement when using the anchoring examples
from each demographic group compared to not using such
anchoring examples (refer to the Crowdsourcing Settings
and Pilot Study in Evaluation section for detailed settings).

We present our crowdsourcing interface design for stu-
dent performance prediction in Figure 5. For the prediction
task of each student, we present the anchoring examples and
corresponding descriptions of the demographic group this
student belongs to. For instance, in Figure 5, since the sam-
ple student in the prediction task belongs to the underrep-
resented age group, our interface also presents the anchor-
ing examples for this group (Figure 4(b), 4(d), and 4(f)) in
the instructions. The objective of this interface design is to
1) address the confirmation bias by presenting anchoring
examples of each performance category and 2) reduce the
bias caused by the difference in behavior patterns among
demographic groups by showing demographic group-wise
anchoring examples.

We collect crowd predictions from the crowdsourcing
platform using our bias-aware interface design shown in Fig-
ure 5. Only samples in the crowdsourcing subset S, which
are likely to be underrepresented samples receiving inaccu-
rate predictions from Al models, are predicted by the crowd
to explore the tradeoff between improving algorithmic fair-
ness and limiting crowdsourcing budget. We observe that

crowd workers might have different levels of accuracy in
terms of providing accurate responses. Hence, instead of di-
rectly applying the majority voting strategy to obtain the
aggregated crowd labels that is known to be suboptimal
when crowd workers have different reliability (Zhang et al.
2019b), we leverage an estimation theory-based truth dis-
covery model (Wang et al. 2012) to jointly derive the truth-
ful crowd labels of the queries as well as the reliability of the

workers. Let ch for all j € [1, J] represent the aggregated
crowd prediction of students in the crowdsourcing subset S.
We then design a crowd offloading strategy to effectively
address the biased Al results using the aggregated crowd la-

bels. In our strategy, for all J students, the truthful labels LC
derlved from the crowd are used to replace the Al predlctlons
L}“ of the testing samples in the crowdsourcing subset S to

generate the final framework prediction L (Definition 4).

Evaluation
Student Performance Prediction Datasets

To evaluate the accuracy and fairness of the proposed De-
biasEdu framework, we leverage the demographic, behav-
ioral, and performance data collected from the online learn-
ing platform Open University (Kuzilek, Hlosta, and Zdra-
hal 2017). In particular, we take the age of students as the
demographic attribute in our evaluation since potential dis-
advantages have been observed for underrepresented older
students in online education (Kuzilek, Hlosta, and Zdrahal
2017). Following the common practice in fairness applica-
tions (Hardt, Price, and Srebro 2016), we categorize the age
attribute into two demographic groups (i.e., age less than 35
and age greater than or equal to 35). The behavioral data is
measured by the activities (i.e., clickstream data) on differ-
ent web pages (e.g., course material, course quizzes, topic
forums, and collaborative activities) on the online learning
platform per day for each student. The ground truth label of
a student’s final performance is assigned by the course in-
structors into three different levels (i.e., Fail, Pass, and Dis-
tinction). We use two datasets for different types of courses
to comprehensively evaluate our DebiasEdu framework. In



Datasets | STEM | Social Science
Total Number of Students | 1,938 \ 1,767
Percent of Fail 34.0% 36.4%
Percent of Pass 58.2% 51.3%
Percent of Distinction 7.8% 12.3%
Percent of Age < 35 75.6% 67.6%
Percent of Age > 35 24.4% 32.4%

Table 1: Student performance prediction dataset statistics.

particular, the first dataset is collected from a STEM course,
and the second dataset is collected from a Social Science
course. Statistics of the two datasets are shown in Table 1.

Crowdsourcing Settings and Pilot Study

We deploy our interface design shown in Figure 5 to col-
lect the crowd prediction from Amazon Mechanical Turk
(AMT), one of the largest crowdsourcing platforms that pro-
vides the access to a massive number of online crowd work-
ers worldwide with reasonable costs. To ensure the crowd-
sourcing quality, we set the qualification requirement as fol-
lows: the crowd workers must have completed over 10,000
approved tasks with an overall approval rate greater than
95% before starting to work on our task. The inter-worker
agreements of different crowd workers are 0.664 and 0.637
in terms of the Cohen’s Kappa score (Kappa) on the STEM
course dataset and the Social Science course dataset, respec-
tively. A Kappa score greater than 0.6 typically indicates
good agreement (Cohen 1960). We pay $0.05 to a crowd
worker for each prediction task. We follow the Institutional
Review Board protocol approved for this project. In our eval-
uation, we set the percentage « of crowdsourcing samples as
15% and the number of crowd workers as 5.

We first demonstrate the effectiveness of utilizing general
crowd workers without educational domain knowledge in
the student performance prediction task using both quanti-
tative and qualitative analysis. In particular, we conduct a
pilot study using the crowdsourcing subset (Definition 5) on
the STEM course that includes 50 sample students, which
are predicted by crowd workers in our experiments. We re-
cruit both general crowd workers and educational practition-
ers (i.e., crowd workers who engage in educational activ-
ities as job responsibilities) to predict the final grades of
these students using the same crowdsourcing task design
(Figure 5). Our objective is to study if educational domain
knowledge is required to conduct this task by comparing
the crowdsourcing performance of general crowd workers
and educational workers. The educational workers are se-
lected on AMT using the premium qualification of job func-
tion'. We set the number of crowd workers per student to
be 5. Our crowdsourcing experiments involved the partici-
pation of 69 educational workers and 113 general workers.
The difference in the number of crowd workers is related
to the fact that there are more general crowd workers avail-
able on AMT compared to educational workers. The col-
lected predictions from educational workers are aggregated

"https://requester.mturk.com/pricing

by the estimation theory-based truth discovery model intro-
duced in the Solution section for each student. We utilize the
same estimation theory-based aggregation model for general
crowd workers in this study to ensure a fair comparison. By
comparing the aggregated prediction results, we observe that
general crowd workers and educational workers achieve an
agreement of 0.746 in terms of the Kappa score. The no-
table consensus demonstrates that our student performance
prediction task can be completed by general crowd work-
ers without educational domain knowledge. In addition, for
the recruited educational practitioners, we further ask them
the following question: “Based on your work experience in
education, do you think completing this task requires ed-
ucational domain knowledge? If you think it is required,
please provide explanations of what domain knowledge is
required.” Collected results indicate that 95.7% of educa-
tional workers involved in the study believe that no educa-
tional domain knowledge is required to effectively conduct
the student performance prediction task. Specifically, some
educational workers justify their conclusions by acknowl-
edging the clarity of our prediction task, such as “I don’t
think it is required as the graphical representation makes
it easy to predict”. To conclude, the quantitative predic-
tion comparison and qualitative inquiry results consistently
demonstrate the effectiveness of recruiting general crowd
workers to work on the student performance prediction task.

To further verify the effectiveness of our crowdsourcing
task design, we formulate the following question to ask the
recruited educational workers after they finish the predic-
tion tasks: “Based on your work experience in education,
do you feel comfortable predicting a student’s final grade in
an online course based on online activities (e.g., measured
by clickstream data)?” A noteworthy 87.0% of educational
practitioners felt comfortable conducting this task. This sub-
stantial percentage serves as evidence of the effectiveness of
our task design since it is important to note that no measure-
ments can 100% effectively predict a student’s final grade
except for the final grade itself. Particularly, we receive re-
sponses from educational workers that endorse our task de-
sign based on their professional domain experience, such as
“I feel comfortable to predict a student’s final grade because
I do this work in my current job.” The inquiry results con-
firm the effectiveness of our crowdsourcing task design in
predicting a student’s performance.

Baselines and Evaluation Settings

In our evaluation, we compare our DebiasEdu with a rich set
of state-of-the-art Al, Fair Al, and Crowd—AlI baselines.

1) Al Baselines: ANN (Waheed et al. 2020) utilizes a deep
neural network to predict a student’s performance based on a
set of handcrafted features (e.g., clicks in a course, clicks on
the assignment web page). BCEP (Qiu et al. 2022) classifies
and fuses different types of online behavior (e.g., consistent
hard work) to predict a student’s performance. SPDN (Li
et al. 2020) utilizes an LSTM-based feature extraction net-
work and a convolutional feature fusion network to predict
a student’s performance from online learning records.

2) Fair Al Baselines: JMLR19 (Zafar et al. 2019) inte-
grates fairness measurements (e.g., false positive parity) as



STEM Course

Social Science Course

Category ‘ Algorithm ‘ Accuracy F1-Score Kappa MCC ‘ Accuracy F1-Score Kappa MCC
ANN 0.6059 0.6177 0.3142 0.3164 0.5500 0.5567 0.2230 0.2238

Al BCEP 0.7322 0.7039 0.4733 0.4786 0.7086 0.6659 0.4405 0.4600
SPDN 0.7118 0.7162 0.5011 0.5083 0.7059 0.6864 0.4430 0.4691

JMLR19 0.6500 0.6706 0.4282 0.4432 0.6588 0.6734 0.4122 0.4183

Fair AL NeurIPS21 0.7000 0.7179 0.4870 0.4927 0.6882 0.6959 0.4516 0.4586
VS 0.6676 0.6833 0.4424 0.4514 0.5265 0.5727 0.3059 0.3392

StreamCollab 0.7147 0.7169 0.4949 0.4981 0.6824 0.6868 0.4418 0.4482

Crowd-Al DeepActive 0.7382 0.7228 0.5063 0.5089 0.6324 0.6468 0.3593 0.3692
LearningLoss 0.6882 0.6717 0.4144 0.4352 0.6882 0.6717 0.4144 0.4352

Ours ‘ DebiasEdu ‘ 0.8294 0.8283 0.6844 0.6850 ‘ 0.7647 0.7556 0.5676 0.5818

Table 2: Evaluation results of student performance prediction Accuracy on the STEM and Social Science course datasets.

constraints during training to achieve fair performance pre-
diction. NeurIPS21 (Bendekgey and Sudderth 2021) uti-
lizes data re-weighting and fairness constraints (e.g., equal
opportunity) to achieve robust fairness in student perfor-
mance prediction. VS (Kini et al. 2021) is a vector-scaling-
based optimization approach that utilizes multiplicative and
logit adjustments for fair group-sensitive classification.

3) Crowd-Al Baselines: StreamCollab (Zhang et al.
2021) is a crowd—Al system that leverages uncertainty quan-
tification and crowd knowledge fusion for effective student
performance prediction. DeepActive (Sener and Savarese
2018) is a deep active learning framework that identifies
a core set of samples and integrates the crowd on them
to improve prediction accuracy. LearningLoss (Shukla and
Ahmed 2021) is a crowd—Al framework that leverages a
task-agnostic loss design to efficiently integrate Al and the
crowd for accurate student performance prediction.

For a fair comparison, we use the same inputs for all
compared schemes: 1) the demographic attribute of age for
all students, 2) the behavioral data of online activities per
day for all students, and 3) the crowd prediction collected
from the crowdsourcing platform for students in the crowd-
sourcing subset. Our DebiasEdu and all baselines are im-
plemented using PyTorch libraries and trained on NVIDIA
RTX 6000 GPUs. We use the Adam optimizer with a learn-
ing rate of 1 x 1073 to train all compared models. We set the
batch size to 20 and train the models for over 200 epochs.

To evaluate the model accuracy, we leverage four repre-
sentative metrics for multi-class classification (Parker 2011):
1) Accuracy, 2) F1-Score, 3) Cohen’s Kappa Score (Kappa),
and 4) Matthews Correlation Coefficient (MCC). We include
Kappa and MCC since our datasets are imbalanced as shown
in Table 1 and these metrics have been demonstrated to be
reliable in evaluating prediction accuracy given imbalanced
data (Chicco and Jurman 2020). Higher values of these ac-
curacy metrics indicate better performance. To evaluate the
model fairness, we utilize four commonly used fairness met-
rics (Hardt, Price, and Srebro 2016; Zafar et al. 2017): 1)
True Positive Parity (T.P. Parity) (i.e., Equal Opportunity),
2) False Positive Parity (F.P. Parity), 3) Equalized Odds (Eq.
Odds), and 4) Accuracy Parity (Acc. Parity). Lower values

of the fairness metrics indicate less bias and better fairness.

Evaluation Results

Accuracy Comparisons First, we evaluate the accuracy
of all compared approaches in student performance predic-
tion on the STEM course and Social Science course datasets.
Evaluation results are shown in Table 2. We observe that
our DebiasEdu consistently outperforms all baselines on
all accuracy metrics. For example, on the STEM course
dataset, the performance gains of our DebiasEdu compared
to the best-performing baseline DeepActive on Accuracy,
F1-Score, Kappa, and MCC are 12.3%, 14.6%, 35.2%, and
34.6%, respectively. Such performance gains can be at-
tributed to the fact that our DebiasEdu framework develops
a novel gradient-based module to identify the demographic
bias of Al and designs a debias-driven crowd—Al collabora-
tion module to address the identified bias and improve the
overall student performance prediction accuracy.

Fairness Comparisons Second, we compare the fairness
of our DebiasEdu and the compared baselines on the two
datasets. The evaluation results are presented in Table 3. We
note that the DebiasEdu achieves consistent performance
gains compared to all baselines on both datasets by reach-
ing the lowest prediction bias. For instance, on the Social
Science course dataset, the decreases in T.P. Parity, F.P. Par-
ity, Eq. Odds, and Acc. Parity of our DebiasEdu compared
to the best-performing baseline BCEP are 55.2%, 75.3%,
68.3%, and 50.8%, respectively. The significant improve-
ments in fairness demonstrate that our DebiaEdu approach
successfully identifies and addresses the demographic bias
in student performance prediction by carefully modeling the
Al bias by gradient variation and designing a novel crowd-
sourcing interface to reduce the crowd cognitive bias.

Ablation Study Next, we conduct an ablation study to
evaluate the contribution of the two key modules (i.e., GBI
and CBC) of our DebiasEdu framework. We present the ac-
curacy and fairness evaluation results when removing each
of the two modules in DebiasEdu. In particular, to remove
the GBI module, we randomly select 15% of samples from
the testing set for crowd prediction and model calibration.



‘ ‘ STEM Course ‘ Social Science Course
Category | Algorithm | TP Parity ~FEPParity Eq.Odds  Acc.Parity | TP Parity FP.Paity Eq. Odds  Acc. Parity
ANN 0.2150 0.2056 0.2103 0.2129 0.2150 0.2824 0.2487 0.2158
Al BCEP 0.1400 0.3253 0.2301 0.1377 0.1450 0.2720 0.2085 0.1453
SPDN 0.1550 0.3714 0.2607 0.1520 0.1800 0.3259 0.2529 0.1795
JMLR19 0.1500 0.2526 0.2013 0.1470 0.1950 0.3675 0.2813 0.1973
Fair Al NeurIPS21 0.1700 0.1786 0.1743 0.1611 0.2850 0.1919 0.2385 0.2833
Vs 0.1350 0.2316 0.1833 0.1388 0.2300 0.3629 0.2965 0.2277
StreamCollab | 0.1450 0.4909 0.3130 0.1347 0.2350 0.1290 0.1820 0.2339
Crowd-Al | DeepActive 0.1250 0.2678 0.1964 0.1334 0.1750 0.2720 0.2235 0.1719
LearningLoss 0.1050 0.2717 0.1884 0.1096 0.1600 0.3324 0.2462 0.1648
Ours | DebiasEdu | 0.0400 0.1635 0.1017 0.0451 | 0.0650 0.0672 0.0661 0.0716

Table 3: Evaluation results of student performance prediction Fairness on the STEM and Social Science course datasets.
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Figure 6: Ablation study on the two datasets.

The sampling rate is the same as the one used in our frame-
work to ensure a fair comparison in terms of crowdsourc-
ing budget. To remove the CBC module, we utilize the
crowd prediction on the crowdsourcing subset to retrain the
Al model. The accuracy and fairness evaluation results on
two datasets are shown in Figure 6. The evaluation results
demonstrate that both the GBI and CBC modules make crit-
ical contributions to the DebiasEdu framework in terms of
both prediction accuracy and fairness.

Discussion of Benefits for Students

The accurate and fair student performance prediction results
can be utilized to provide feedback to students, thereby en-
hancing their metacognitive abilities (Boud, Lawson, and
Thompson 2015). Figure 7 shows the sample feedback de-
sign for students in our pilot testing. First, we incorporate
a self-estimation page where students are prompted to esti-

Self-Estimation Model Prediction and Suggestion

Please estimate your course final grade
based on your current understanding.

Fail Pass

We predict your potential final grade to

be Pass using your online activities.
® Distinction Your current self-estimation may be

Please indicate your desired final grade overly optimistic.

for this course.

} To achieve a Distinction, you may
Fail Pass

® Distinction . . .
consider completing more activities.

Continue Continue

Figure 7: Sample feedback design for students in an online
course based on our prediction results.

mate their final grades and specify their desired grades. Sec-
ond, we design a model prediction and suggestion page that
offers 1) predicted final grades from our framework and 2)
suggestions to help students refine their self-estimation and
achieve the desired final grades given current completed ac-
tivities. Qualitative results from initial pilot testing suggests
that self-estimation of learning performance relative to an
accurate Al prediction leads to students thinking critically
about their own knowledge. Specifically, the results involve
participants trying to decipher why their self-estimation dif-
fers from Al predictions by assessing their own knowledge.

Conclusion

In this paper, we develop the DebiasEdu to address the de-
mographic bias in student performance prediction for online
education. In particular, we design a crowd—AlI collaborative
framework that effectively melds Al and crowd intelligence
to accurately predict student performance in online educa-
tion and jointly minimize the demographic bias of Al and
the cognitive bias of the crowd. Evaluation results on two
online courses demonstrate that DebiasEdu achieves consis-
tent performance gains compared to all state-of-the-art base-
lines in terms of both prediction accuracy and fairness. We
believe our DebiasEdu provides useful insights to address
the demographic bias problem in other online education ap-
plications (e.g., exam assessment and cheating detection).
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