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Abstract
This paper studies a bidirectional human–AI col-
laborative student performance prediction problem
to enhance equitable online education, aligning
with the United Nations’ Sustainable Development
Goal (SDG) of ensuring inclusive and equitable
quality education for all. The goal is to leverage
collaborative intelligence to generate accurate and
fair student outcome predictions from behavioral
data, ensuring equitable estimation for underrepre-
sented populations. Current fair AI solutions of-
ten fail to mitigate demographic bias in the absence
of student demographic data, while human–AI col-
laborative approaches frequently overlook human
cognitive biases, leading to inaccurate predictions.
We develop CollabDebias, a novel bidirectional
human–AI collaborative framework that utilizes the
complementary strengths of AI and humans to mit-
igate the AI demographic bias and human cogni-
tive bias. To address AI demographic bias, we pro-
pose an uncertainty learning-based bias identifica-
tion method and a reliability-aware human–AI inte-
gration approach. To reduce human cognitive bias,
we design uncertainty-aware visualization of AI de-
cision area and attention mechanism. Experimen-
tal results on an online course demonstrate Collab-
Debias’s effectiveness in improving student perfor-
mance prediction accuracy and fairness.

1 Introduction
Emerging advances in online technologies, such as open
educational platforms and AI-driven personalized learning
systems, offer transformative opportunities to advance the
United Nations’ Sustainable Development Goal (SDG) of in-
clusive and equitable quality education [Ayeni et al., 2024].
Integrating AI and human intelligence (HI) into online learn-
ing platforms is a pivotal approach to enhancing learning ex-
periences and outcomes [Wang et al., 2022]. This paper stud-
ies student performance prediction in online education [Song
et al., 2022], aiming to predict students’ final grades (e.g.,
Fail, Pass, Distinction) using behavioral data (e.g., reading
materials, completing quizzes). However, AI predictions of-
ten suffer from biases that disproportionately affect vulnera-

ble populations, such as underrepresented older students who
often face additional barriers in online learning. We propose
a novel bidirectional human–AI collaborative framework in
which diverse stakeholders—students, crowdsourced annota-
tors, and AI fairness researchers—actively contribute to mit-
igating both AI demographic bias and human cognitive bias.
This approach aims to generate accurate and fair AI predic-
tions to assist students in developing accurate and unbiased
self-assessment through AI-assisted self-reflection. By ac-
tively incorporating multi-disciplinary experts in both edu-
cation and AI fairness domains into our team, this work ad-
vances state-of-the-art human–AI collaboration technologies
in online education. This approach fosters equitable and life-
long learning opportunities for diverse populations, with a
special focus on supporting underrepresented groups.

Emerging advances in AI have demonstrated impres-
sive accuracy and scalability in student performance predic-
tion [Waheed et al., 2020; Qiu et al., 2022]. However, cur-
rent AI solutions often struggle to produce both accurate
and fair predictions across demographic groups due to in-
herent biases in online education (referred to as AI demo-
graphic bias) [Kizilcec and Lee, 2022], particularly when
sensitive demographic data is unavailable due to privacy con-
cerns [Nguyen et al., 2023]. The left side of Figure 1 il-
lustrates AI demographic bias in age groups: the model in-
correctly predicts an older student will achieve a Distinction
grade, based on trends from younger, traditional students,
while overlooking the additional efforts often required by
older, non-traditional students. Such inaccurate predictions
can mislead underrepresented students, causing them to ei-
ther underprepare or overcommit efforts, exacerbating their
existing disadvantages in online education [Kizilcec and Lee,
2022]. The fair AI solutions have been proposed to miti-
gate AI demographic bias by re-weighting underrepresented
samples or adding fairness regularizations [Kini et al., 2021].
However, these methods typically require access to student
demographic information, which is often unavailable due to
privacy concerns in educational applications [Kizilcec and
Lee, 2020]. In this paper, we focus on the more challenging
scenario of addressing AI demographic bias without access to
sensitive demographic data, ensuring fair AI-driven feedback
in privacy-aware settings [Nguyen et al., 2023].

HI has been used to enhance AI predictions through high-
level understanding (e.g., common-sense reasoning, contex-



Figure 1: Illustration of addressing AI demographic bias and human cognitive bias by their complementary strengths.

tual understanding) in tasks like language generation [Ope-
nAI, 2023] and image classification [Budd et al., 2021]. In
student performance prediction, we propose leveraging HI to
mitigate AI demographic bias by guiding humans to predict
final grades based on general learning activity patterns that
humans can easily recognize (e.g., consistent work, extra ef-
fort before the final), which are less affected by the lack of
underrepresented training data [Zhang et al., 2023]. How-
ever, current human–AI collaborative approaches often over-
look human cognitive bias, leading to inaccurate predictions
[Draws et al., 2022]. Specifically, we identify two key cogni-
tive biases in our problem [Draws et al., 2021]: 1) Confirma-
tion bias, where humans favor outcomes align with their pre-
existing beliefs (e.g., predicting more Pass grades and fewer
Fail or Distinction grades), and 2) Affect heuristic, where pre-
dictions are influenced by immediate emotional reactions to
study behaviors (e.g., preferences towards consistent work vs.
extra work before the final), causing inconsistent/inaccurate
outcome predictions, as illustrated in Figure 1.

Motivated by the limitations of current AI, fair AI, and
human–AI methods, we propose a bidirectional human–AI
collaborative solution to address both AI demographic bias
and human cognitive bias by leveraging their complementary
strengths. There are two key technical challenges:

The first challenge is effectively addressing AI demo-
graphic bias without access to sensitive student demographic
data. Current fair AI solutions, such as sample re-weighting
or fairness regularization, rely on demographic data to iden-
tify underrepresented groups. Without demographic data, al-
ternative methods are needed to accurately detect and miti-
gate biased predictions for underrepresented students. First,
while active learning methods [Shukla and Ahmed, 2021] can
select hard-to-predict samples, they often prioritize accuracy
over fairness, potentially neglecting underrepresented groups.
Alternatively, human–AI collaborative approaches, such as
ensemble strategies [Zhang et al., 2021], often overlook hu-
man cognitive bias and assume equal reliability between AI
and humans, leading to biased and inaccurate predictions.

The second challenge is addressing different types of hu-
man cognitive biases across different demographic groups.
To mitigate confirmation bias, providing AI prediction cri-
teria (e.g., estimated activities needed for a Distinction) can
help humans re-evaluate their assumptions about the required
activities to achieve a certain grade. However, these predic-
tion criteria vary across demographic groups (e.g., older stu-
dents may need more efforts than younger ones to achieve the

same grade) and cannot be directly applied to all demographic
groups. The affect heuristic further complicates predictions,
as humans who favor consistent work over last-minute effort
may incorrectly predict a Pass for the student shown in Fig-
ure 1, who actually achieve a Distinction by extra effort be-
fore the final. Addressing these cognitive biases requires a
thorough consideration of diverse study behaviors across de-
mographic groups.

To address these challenges, we propose CollabDebias, a
framework that combines the complementary strengths of AI
and HI to mitigate both AI demographic bias and human cog-
nitive bias, enabling accurate and fair human–AI collabora-
tive predictions, as illustrated in Figure 1. In particular, for AI
demographic bias, it identifies underrepresented students by
estimating uncertainty in training gradients, as gradient vari-
ability is a reliable indicator of prediction generalizability, es-
pecially for underrepresented groups with distinct character-
istics. For human cognitive bias, CollabDebias designs novel
visualization for AI decision areas and attention mechanism,
providing comprehensive classification criteria that explain
how AI model makes predictions across diverse demographic
groups, effectively addressing cognitive bias. Additionally,
a reliability-aware, estimation theory-based integration strat-
egy combines debiased human and AI predictions, correcting
bias without compromising accuracy. Experiments on Open
University Learning Analytics Dataset (OULAD) [Kuzilek et
al., 2017] show that CollabDebias improves student perfor-
mance prediction accuracy (e.g., +5.43% in F1) and fairness
(e.g., -39.42% in Equalized Odds) without requiring sensitive
demographic data.

2 Related Work
AI and HI in Online Education. There is a growing trend
of leveraging AI and HI to enhance learning experiences and
outcomes in online education [Ma et al., 2022; Jiang et al.,
2024]. For instance, Abdi et al. [2020] incorporated crowd-
sourced contributions from students to enhance the efficiency
of online education assessments and promote student engage-
ment. Zhu [2022] developed a metaverse-based online edu-
cation platform that leverages human editor expertise to im-
prove user experience of AI-driven educational modules. Par-
damean et al. [2022] proposed an AI-based collaborative fil-
tering algorithm to predict student learning preferences and
recommend tailored learning materials. While both AI and
HI have been utilized to facilitate online education, they also



suffer from certain biases, limiting their fairness of educa-
tional opportunities for all learners [Neal et al., 2022].

AI Demographic Bias. There has been a surge in AI de-
mographic bias analysis and mitigation across various fields
[Caliskan, 2023]. For instance, Raji and Buolamwini [2019]
audited commercial facial analysis algorithms and identified
significant biases in the categorization across racial groups.
Blodgett et al. [2020] conducted a comprehensive review of
bias in language processing systems, demonstrating that mod-
els trained on biased datasets often reinforce stereotypes and
proposed data curation to mitigate biases. In education, Baker
and Hawn [2022] explored AI demographic bias, recom-
mending fairness analysis during data collection and model
evaluation. Similarly, Wongvorachan et al. [2024] investi-
gated bias mitigation techniques, such as resampling, in stu-
dent dropout rate prediction models. However, fair AI solu-
tions often 1) rely on demographic group to re-weight data
or impose fairness constraints, and 2) improve fairness at the
expense of reduced accuracy [Wongvorachan et al., 2024].

Cognitive Bias in Human–AI Collaboration. Human
cognitive bias has been a critical issue in human–AI collabo-
ration where human perceptions, expectations, and interpreta-
tions can introduce bias to undermine the potential synergies
between human expertise and AI [Neal et al., 2022]. Sev-
eral solutions have been proposed to address human cogni-
tive bias in human–AI collaboration [Kliegr et al., 2021]. For
example, Draws et al. [2021] introduced a checklist to miti-
gate cognitive bias in crowdsourcing data annotation. Gemal-
maz and Yin [2021] developed a bias-aware label aggregation
method that examines cognitive bias to infer accurate labels
to train AI models. Soleimani et al. [2022] investigated the
collaboration and knowledge sharing between HR managers
and AI developers in mitigating cognitive bias in AI-assisted
recruitment systems. However, none of the solutions have
leveraged the decision making information from AI model it-
self to reduce cognitive bias in human–AI collaboration.

3 Problem Formulation
In this section, we formally introduce our problem of human–
AI collaborative student performance prediction in online ed-
ucation. We define the input activity data A = {A1, ..., AN}
as a diverse range of activities (e.g., reviewing course materi-
als, taking quizzes, engaging in discussion and collaboration)
carried out by students in an online course. Here, Ai denotes
the activity data for the ith student, where N stands for the
total number of students enrolled in the course. In our prob-
lem, we measure activities using the clickstream data gen-
erated from an online learning platform each day through-
out a semester (e.g., numbers of clicks on different types
of course activities per day), which aligns with established
common practices in student performance prediction frame-
works [Adnan et al., 2021; Qiu et al., 2022]. Clickstream data
serve as a proxy for student engagement, reflecting behaviors
such as content review, assessment participation, and collab-
oration [Kuzilek et al., 2017]. We define the output student
final performance P = {P1, ..., PN} as a set denoting the
final performance grade (Fail, Pass, or Distinction) of all stu-
dents enrolled in a course. Pi represents the final performance

assigned by the course instructor to the ith student.
We introduce D = {D1, ..., DM} to represent a demo-

graphic attribute of students (e.g., gender, age, highest edu-
cation), where M denotes the number of categories for the de-
mographic attribute. Across different demographic attribute
categories, we define underrepresented groups (U ) to indi-
cate traditionally underrepresented groups of students, such
as female students in STEM courses. In our problem, de-
mographic information is used solely for evaluation purposes
and is not available during model training to protect private
information from students [Nguyen et al., 2023]. We note
that achieving demographic fairness in the absence of demo-
graphic information is particularly challenging because it is
impractical to tune the AI model or augment the input data for
particular demographic groups without knowing the their de-
mographic labels [Zhang, 2024]. Therefore, we take a differ-
ent approach by leveraging complementary HI to address the
demographic bias of AI. In particular, we introduce the col-
laborative prediction (P̂ ) that represents the overall human–
AI collaborative prediction of our student performance pre-
diction framework. We define P̂ = {P̂1, ..., P̂N} as a set
comprising predictions of our framework, with each P̂i rep-
resenting the prediction of CollabDebias for the ith student.

The overall objective of CollabDebias is to explore AI and
HI to achieve accurate and fair predictions of student perfor-
mance. This entails maximizing prediction accuracy while
minimizing demographic bias as follows:

argmax
P̂i

Pr(P̂i = Pi | A) & argmin
P̂i

F(P̂i, Pi | A) (1)

for ∀1 ≤ i ≤ N , where F(·, ·) represents the fairness metric
to assess performance disparities across various demographic
groups given demographic attribute D. We note that the fair-
ness metric is minimized since a smaller fairness metric value
indicates better fairness performance.

4 Solution
CollabDebias is a bidirectional framework leveraging the
complementary strengths of AI and HI to mitigate AI de-
mographic bias and human cognitive bias in student perfor-
mance prediction. It comprises three key modules: 1) Gra-
dient Uncertainty-based AI Demographic Bias Identification,
which uses gradient-based deep uncertainty learning to detect
biased samples for crowdsourced human predictions to mit-
igate the bias; 2) Decision Uncertainty-based Human Cog-
nitive Bias Mitigation, which designs an AI decision area
and attention visualization scheme to address human cogni-
tive bias; and 3) Estimation Uncertainty-aware Integration,
which integrates AI and human predictions using a reliability-
aware, estimation theory-based model to ensure accurate and
fair collaborative predictions.

4.1 Gradient Uncertainty-based AI Demographic
Bias Identification

To predict students’ final performance P from activity data
A, we build a performance prediction model (m(·)):

P̂AI
j = m(Aj), ∀1 ≤ j ≤ J (2)



where P̂AI
j is the AI prediction for the jth student’s final per-

formance in the training set. We utilize the long short-term
memory (LSTM) model followed by fully connected layers
as our model m(·), where the LSTM model is well-suited
for extracting meaningful patterns from sequential behavioral
data, as demonstrated in prior educational research [Li et al.,
2020]. To further enhance the model’s ability to focus on the
most relevant sections of the input behavioral data, we incor-
porate an attention mechanism [Vaswani et al., 2017] after
the LSTM model, which learns attention weights to prioritize
key temporal features for each student’s performance predic-
tion. While our input data consists of structured, sequential
time-series activity records (e.g., daily counts of course activ-
ity accesses), its explainable nature differs significantly from
unstructured data like images or texts, which often require
highly complex architectures such as large-scale transform-
ers. The structure simplicity and explainability of our data
allows us to employ a streamlined model architecture with
fewer parameters, ensuring computational efficiency and re-
ducing the risk of overfitting. Importantly, this design choice
enhances model explainability, enabling clear visualization of
decision areas and attention mechanisms, which is critical for
the development of our second key module in Section 4.2.

To identify biased AI predictions and improve fairness, we
leverage deep uncertainty learning to select a subset of stu-
dents from the testing set where the model exhibits high pre-
diction uncertainty, referred to as the biased AI subset (S).
Formally, S = {A1, ..., AK}, where K = α · N . This
subset aims to prioritize underrepresented groups U with-
out requiring demographic information, as these students are
more likely to receive uncertain predictions due to insufficient
training data. Please note that we do not use any labels of the
samples in S by following the common practices in using the
testing data [Ren et al., 2021].

AI models tend to produce uncertain predictions for sam-
ples with high gradient uncertainty during training, as gra-
dient variability is a known indicator of generalization diffi-
culty, particularly when learning from diverse or underrepre-
sented distributions [Ren et al., 2018]. Samples from under-
represented groups often exhibit distinct input characteristics
(e.g., older students often require more efforts to achieve the
same grade as younger ones), making them inherently more
challenging for the model to learn effectively. We propose a
gradient uncertainty-based method to identify such samples
without accessing sensitive demographic attributes. To quan-
tify gradient uncertainty, we compute the variance of gradi-
ents for each student across all training epochs. For a given
student, we calculate the gradient at each epoch and then es-
timate the variance of these gradients over time. This vari-
ance serves as a proxy for uncertainty, as higher variance in-
dicates greater instability in the model’s learning process for
that sample. Formally, gradient uncertainty is computed as:

Vj = Var

∂L(P̂AI
j , Pj)

∂Aj

 =
1

T

T∑
t=1

∂Lt(P̂AI
j,t , Pj)

∂Aj

− gj

2

(3)

for ∀1 ≤ j ≤ J , where T is the total number of training
epochs, Lt is the loss at the tth epoch, and gj is the average

of gradient over all epochs for the jth sample, computed as:

gj =
1

T

T∑
t=1

∂Lt(P̂AI
j,t , Pj)

∂Aj

(4)

We select a subset of training samples ST , comprising the
top α largest gradient variances Vj in the training set:

S
T

= {Aj | Vj ≥ Vα, ∀1 ≤ j ≤ J} (5)

where Vα is the α largest gradient variance. The choice of α
is made empirically, considering the trade-off between algo-
rithmic fairness and the available crowdsourcing budget.

Identifying a subset of testing samples with significant gra-
dient uncertainty is non-trivial due to the lack of ground truth
annotations required for gradient computation. To address
this limitation, we select the top α testing samples exhibit-
ing similar characteristics as the samples selected from the
training set to be incorporated into the biased AI subset S
for human intervention. This strategy is motivated by the
observation that an AI model generates similar predictions
and gradients for input samples that share similar charac-
teristics [Charpiat et al., 2019]. To quantify similarity, we
compute the Euclidean distance between vectors representing
each test sample and the selected training samples in ST :

Ei =
∑

Aj∈ST

∥Aj − Ai∥2 , ∀1 ≤ i ≤ N
(6)

Then, we select the top α testing samples exhibiting similar
characteristics as selected training samples:

S = {Ai | Ei ≤ Eα, ∀1 ≤ i ≤ N} (7)

where a smaller value of Euclidean distance indicates a higher
similarity between two samples. Eα is the α smallest distance
value. Given the selected biased AI subset S, we then lever-
age HI to troubleshoot these demographically biased samples.
Our bias identification design effectively selects demograph-
ically biased samples, increasing the percent of underrepre-
sented age group from 24.4% in the whole population to 56%
in the biased AI subset.

4.2 Decision Uncertainty-based Human Cognitive
Bias Mitigation

Our visualization designs to address human cognitive bias is
shown in Figure 2. We first present the activity data of a stu-
dent using a line chart with blue data points. The activity data
Ai for the ith student is the completed activities on the online
learning platform every two weeks throughout the semester
measured by clickstream data. We consider bi-weekly activ-
ity data since aggregating activities within a certain period is
observed to be both visually clear and informative enough to
assist humans in accurate prediction. We rescale all numbers
of activities for visualization clarity.

To address confirmation bias, where humans favor pre-
dictions aligning with their preexisting beliefs, we leverage
AI to generate classification criteria that help recalibrate hu-
man hypotheses. To ensure these criteria are free from AI
demographic bias, we introduce a novel decision area de-
sign based on the AI model’s decision boundary. While deci-
sion boundaries separate prediction categories [Karimi et al.,



(a) Visualization of decision
area in step 1 of our prediction
task (i.e., selecting Fail or Pass).

(b) Visualization of attention and
decision area in step 2 of our
task, where attention is presented
by varying color darkness.

Figure 2: Visualization of our decision area and attention designs
for a sample student who attains a Distinction.

2019], they often fail to account for intrinsic uncertainty in AI
predictions, which can vary across demographic groups (Sec-
tion 1). To address this limitation, we extend the concept of
decision boundaries to decision areas, which represent an un-
certain range of decision criteria rather than a fixed boundary.
Specifically, we construct decision areas by visualizing a re-
gion within one standard deviation (σ) of the decision bound-
ary. This design captures the variability in prediction crite-
ria across demographic groups, providing comprehensive and
unbiased guidance for human annotators. By visualizing de-
cision areas, we ensure that humans are exposed to a broader
and more representative range of criteria, mitigating confir-
mation bias and improving collaborative prediction accuracy.

Decision boundaries in the original input feature space are
often challenging to visualize, as they often exist in high-
dimensional spaces and are typically intertwined. Thus, we
propose to use borderline samples—training samples with
final grades near the decision boundary between two adjacent
grade levels (e.g., Pass and Distinction)—to generate and vi-
sualize decision areas in the sample space. In particular, we
identify training samples whose predictions keep changing
between two adjacent grade levels across epochs during the
training process [Chang et al., 2017]. These uncertain pre-
dictions between two adjacent grade levels indicate a high
probability of the samples belonging to either of these two
grade levels, typically because these samples share charac-
teristics with two grade levels. We focus on such samples
whose predictions exhibit high uncertainty during training by
employing Shannon entropy as a quantitative measure as fol-
lows [Namdari and Li, 2019]:

H(Aj) = −
T∑

t=1

P̂AI
j,t · log

(
P̂AI

j,t

)
, ∀1 ≤ j ≤ J (8)

where T is the total number of training epochs. We focus on
samples Aj where H(Aj) exceeds a predefined threshold β,
capturing those borderline samples with high uncertainty:

S
B

= {Aj | H(Aj) > β, ∀1 ≤ j ≤ J} (9)

Our decision area design is shown in Figure 2, where we sep-
arate the prediction task into two steps for visual clarity. For
each student, we plot the decision areas that represent the un-
certain areas between grade levels (i.e., the “Fail or Pass” and

“Pass or Distinction” areas with hatched lines). The decision
area visualization mitigates human confirmation bias (e.g.,
the preconception that a Distinction grade is rarely assigned)
by presenting AI classification criteria, such as the level of
activity required for a student to achieve a Distinction.

The affect heuristic—people tend to select the answer
based on their initial emotional reactions—primarily appears
in students whose final performance is difficult to predict. For
instance, a student with average prior effort but significantly
increased effort before the final exam may still achieve a Dis-
tinction in our problem. A person favoring late-stage effort
may predict this correctly, while another who prefers consis-
tent work may incorrectly predict a Pass. Such incorrect pre-
dictions arise from differing importance assigned to different
periods during the semester. Thus, to identify samples where
the affect heuristic is prevalent, we measure inter-annotator
inconsistency using Shannon entropy for each student:

G(Ai) = −
A∑

a=1

̂
PCrowda

i · log
( ̂
PCrowda

i

)
, ∀1 ≤ i ≤ N (10)

where A is the number of annotators predicting for a student.
To tackle such challenge, we leverage the attention mech-

anism, widely recognized for its ability to enhance perfor-
mance and explainability [Vaswani et al., 2017]. We present
our visualization design in Figure 2b, where we plot differ-
ent attention weights for each activity data point using vary-
ing darkness of the blue color. A darker color indicates a
larger attention weight computed by the model. Our color
darkness visualization design is motivated by the characteris-
tic of human visual attention that humans tend to pay more
attention to darker color compared to lighter color [Sun et
al., 2016]. For the student in Figure 2 who achieves a Dis-
tinction, the first step is relatively simple given the relatively
high activities in Figure 2a. However, the second step shown
in Figure 2b is challenging only with decision areas. There
are some weeks where the activity clearly lies in the Distinc-
tion area and other weeks where the activity obviously lies
in the Pass area. Our attention visualization of varying color
darkness assists humans in predicting the correct answer of
Distinction by highlighting the extra work before the final.

4.3 Estimation Uncertainty-aware Integration
We collect human predictions from the crowdsourcing plat-
form using our visualization design to address human cogni-
tive bias as explained in Subsection 4.2. Specifically, human
annotators are tasked with predicting only the samples in the
biased AI subset S, which are more likely to belong to un-
derrepresented groups and thus receive uncertain predictions
from AI models. In addition to bias, we observe another di-
mension of uncertainty: the AI model and different human
annotators may exhibit different levels of reliability when it
comes to prediction accuracy. In these scenarios with varying
source reliability, directly employing the majority voting to
aggregate AI and human predictions is known to be subopti-
mal [Zhang et al., 2019]. In particular, majority voting as-
sumes the same reliability among all different sources includ-
ing the AI model and all human annotators and thus assigns
the same weight to all of them in prediction aggregation. In
such a case, a biased and less reliable source is treated as the



same as an unbiased and reliable source in voting, leading to
inaccurate and unfair collaborative predictions.

Therefore, we design a maximum likelihood estimation
model, which enables us to jointly derive accurate human–AI
collaborative predictions P̂ while quantifying the reliability
of the AI model and each human annotator. The model iter-
ates between two steps: 1) estimating the reliability of each
source (AI and annotators) given current predictions, and 2)
updating collaborative predictions based on estimated relia-
bility. This process maximizes the following likelihood func-
tion, which minimizes collaborative prediction errors:

L(P, P̂ ) =
I∏

i=1

C∏
c=1

(
Pr

(
P̂AI

i = c
∣∣∣Pi = c

)1(Pi=c)

·
A∏

a=1

Pr
( ̂
PCrowda

i = c
∣∣∣Pi = c

)1(Pi=c)
) (11)

where C represents the number of categories of student fi-
nal performance and A is the number of crowd workers mak-

ing predictions for each student. Pr
(
P̂ s
i = c|Pi = c

)1(Pi=c)

represents the probability that a source s predicts P̂ s
i = c

given the true category Pi = c. 1(Pi = c) is a indicator
function that equals 1 if Pi = c is true, and 0 otherwise.

5 Experiments
We leverage the Open University Learning Analytics
Dataset [Kuzilek et al., 2017], focusing on a STEM course
with 1,938 students. The dataset comprises demographic in-
formation (age), activity data (daily clickstream interactions),
and performance outcomes (grades: Fail, Pass, Distinction).
Following established fairness practices [Hardt et al., 2016],
the students were classified into two age groups: under-
represented (≥35, 24.4%) and non-underrepresented (<35,
75.6%). Detailed description and analysis of the dataset are
provided in Appendix. We collect human predictions through
Amazon Mechanical Turk (MTurk), a leading crowdsourcing
platform that grants access to a vast global workforce at rea-
sonable costs. We set the percentage α of the selected biased
AI samples for crowdsourcing as 15% and recruited 5 people
to work on each prediction task. Our crowdsourcing interface
design and settings are in Appendix.

We compare our CollabDebias with state-of-the-art AI, fair
AI, and human–AI baselines: ANN [Waheed et al., 2020],
BCEP [Qiu et al., 2022], SPDN [Li et al., 2020], VS [Kini et
al., 2021], JMLR19 [Zafar et al., 2019], NeurIPS21 [Ben-
dekgey and Sudderth, 2021], StreamCollab [Zhang et al.,
2021], DeepActive [Sener and Savarese, 2018], Learn-
ingLoss [Shukla and Ahmed, 2021], DebiasEdu [Zong et al.,
2023]. Detailed baseline descriptions are in Appendix. To
evaluate accuracy, we use four multi-class classification met-
rics—F1, Accuracy (Acc), Cohen’s Kappa Score (Kappa),
and Matthews Correlation Coefficient (MCC) [Chicco and Ju-
rman, 2020]. For fairness, we consider four metrics: True
Positive Parity (TP Par.), False Positive Parity (FP Par.),
Equalized Odds (Eq. Odds), and Accuracy Parity (Acc
Par.) [Hardt et al., 2016; Yan et al., 2020]. Fairness met-
rics quantify unfairness as differences across demographic
groups, where lower values indicate better fairness. Since

Table 1: Experiment results on prediction accuracy.

Category Algorithm F1 Acc Kappa MCC

ANN 0.6123 0.5971 0.3136 0.3183
AI BCEP 0.6931 0.7208 0.4523 0.4572

SPDN 0.7126 0.7059 0.4780 0.4793

VS 0.6136 0.6000 0.3834 0.4189
Fair AI JMLR19 0.6778 0.6647 0.4319 0.4397

NeurIPS21 0.7509 0.7500 0.5442 0.5443

StreamCollab 0.7003 0.6735 0.4451 0.4514
Human– DeepActive 0.7214 0.7177 0.4927 0.4932

AI LearningLoss 0.7206 0.7176 0.4920 0.4924
DebiasEdu 0.7861 0.7882 0.6046 0.6065

Ours CollabDebias 0.8288 0.8294 0.6862 0.6864

there are no widely accepted human cognitive bias metrics,
we propose two metrics tailored to our problem: 1) Confir-
mation Bias Parity (Conf. Par.): Sum of absolute differences
in prediction accuracy across three grade levels. 2) Affect
Heuristic Parity (Affect Par.): Sum of absolute differences
in prediction accuracy across three observed study patterns:
consistent effort, last-minute effort, and early disengagement.
Similar to fairness, lower values indicate less bias. Detailed
experiment settings are in Appendix.

Collaborative Prediction Accuracy Comparison. We
first compare the student performance prediction accuracy
of all approaches on the online STEM course dataset. The
results presented in Table 1 demonstrate that our Collab-
Debias achieves consistent performance gains compared to
all baselines on all metrics. For instance, the performance
gains of CollabDebias compared to the best-performing base-
line DebiasEdu on F1, Acc, Kappa, and MCC are 5.43%,
5.23%, 13.50%, and 13.17%, respectively. Such perfor-
mance improvements verify that our CollabDebias success-
fully leverages the complementary strengths of humans and
AI to address demographic bias and cognitive bias, thus im-
proving overall student performance prediction accuracy. Be-
sides, we observe that human–AI baselines do not neces-
sarily always outperform AI-only baselines. Equal/under-
performance may perhaps be attributed to 1) the AI model
designs are different in the AI and human–AI baselines and 2)
the sample subset selection methods in human–AI baselines
may fail to select samples that receive biased and inaccurate
AI predictions in our student performance prediction problem
(i.e., if the selected AI predictions are reasonably accurate, it
is difficult for crowd annotators to further improve predic-
tion performance). Moreover, a key distinction between our
work and DebiasEdu is that DebiasEdu relies on demographic
data, while CollabDebias operates without such data due to
privacy constraints. In our setting, DebiasEdu’s performance
deteriorates significantly (see Tables 1 and 2), highlighting
its reliance on demographic data. In contrast, CollabDebias
remains effective by leveraging uncertainty-driven bias iden-
tification and human-guided corrections.

Collaborative Prediction Demographic Fairness Com-
parison. We evaluate the fairness of our CollabDebias and all
compared baselines on our dataset. Results in Table 2 show
that CollabDebias consistently outperforms all baselines by



Table 2: Experiment results on demographic fairness.

Category Algorithm TP Par. FP Par. Eq. Odds Acc Par.

ANN 0.2221 0.2079 0.2189 0.2117
AI BCEP 0.2851 0.3346 0.3073 0.1463

SPDN 0.4671 0.2760 0.3780 0.4327

VS 0.3134 0.3843 0.3522 0.3075
Fair AI JMLR19 0.4868 0.3188 0.4044 0.4625

NeurIPS21 0.3032 0.2546 0.2823 0.1247

StreamCollab 0.3286 0.3001 0.3151 0.3760
Human– DeepActive 0.4168 0.2313 0.3306 0.3588

AI LearningLoss 0.4169 0.2425 0.3363 0.3589
DebiasEdu 0.2847 0.2115 0.2457 0.3315

Ours CollabDebias 0.1309 0.1352 0.1326 0.0523

achieving the lowest values in all fairness metrics (i.e., low-
est prediction differences between groups). For example, the
decreases—that is, improvement—in TP Par., FP Par., Eq.
Odds, and Acc Par. of our CollabDebias compared to the
best-performing baseline ANN are 41.06%, 34.97%, 39.42%,
and 75.30%, respectively. We note that ANN achieves the
lowest bias compared to other baselines simply because it
predicts similarly inaccurately on all demographic groups,
which is not useful in terms of the objective of fairness design
(i.e., achieving accurate predictions among all demographic
groups). The substantial performance gains in fairness can be
attributed to the fact that our CollabDebias approach success-
fully addresses demographic bias in student performance pre-
diction by leveraging the common-sense reasoning and con-
textual understanding of HI while mitigating human cogni-
tive bias in this process. In addition, we observe that fair AI
baselines fail to achieve better fairness performance across all
metrics, which can be related to the fact that 1) these baselines
can be sensitive to the imperfect crowdsourced labels in the
selected biased AI subset, 2) they often only focus on improv-
ing one specific fairness metric, and 3) human–AI baselines
in our experiments also include designs to improve inaccu-
rately predicted samples, where the accuracy improvement
may cause bias reduction to some extent if the improvement
happens to be more relevant to underrepresented samples.

Ablation Study. We first evaluate the contributions
of the three core components of CollabDebias: Gradi-
ent Uncertainty-based AI Demographic Bias Identification
(DBI), Decision Uncertainty-based Human Cognitive Bias
Mitigation (CBM), and Estimation Uncertainty-aware Inte-
gration (EUI). To exclude the DBI module, we uniformly
sample 15% of samples from the test set for human predic-
tion and integration, ensuring the sampling rate matches that
of our framework for a fair comparison. To disable the CBM
module, we modify the crowdsourcing interface by removing
the decision area and attention visualizations, instead provid-
ing a display of average student activity to assist human pre-
dictions. To remove the EUI module, we use the crowd pre-
dictions from the selected subset exclusively to retrain the AI
model. The accuracy and fairness evaluation results are pre-
sented in Figure 3. These results demonstrate the significant
contributions of all three modules—DBI, CBM, and EUI—in
improving both the accuracy and demographic fairness of the
CollabDebias framework.

(a) Accuracy. (b) Demographic Fairness.

Figure 3: Ablation study of collaborative prediction.

(a) Accuracy. (b) Cognitive Bias.

Figure 4: Ablation study of human prediction on the biased subset.

To analyze the effectiveness of our CollabDebias in im-
proving human prediction accuracy and reducing cognitive
bias, we conduct an ablation study on the selected biased AI
subset S by removing our two key design modules of deci-
sion area and attention mechanism hierarchically. In partic-
ular, we first remove the attention design by presenting the
visualization with only decision areas. We then further re-
move the decision areas by showing the visualization with
the average activity of all students. The results, presented
in Figure 4, demonstrate that each of our two modules con-
tributes significantly to improving annotators’ prediction ac-
curacy and reducing cognitive bias. Furthermore, 82.6% of
annotators reported increased confidence in predicting stu-
dent performance when provided with AI decision area and
attention information, validating the effectiveness of our de-
sign.

6 Conclusion
In this paper, we develop CollabDebias to address AI demo-
graphic bias and human cognitive bias in human–AI collab-
orative student performance prediction. We design a bidi-
rectional framework that incorporates uncertainty learning-
based bias identification and collaborative aggregation meth-
ods to mitigate AI demographic bias, while generating
uncertainty-aware AI decision area and attention visualiza-
tion to reduce human cognitive bias. Experiment results on an
online course demonstrate that CollabDebias achieves consis-
tent performance gains compared to all state-of-the-art base-
lines in both prediction accuracy and fairness. We believe our
CollabDebias provides useful insights to address AI demo-
graphic bias and human cognitive bias in other privacy-aware
human–AI collaborative applications (e.g., financial fraud de-
tection, medical image classification).
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